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I. Introduction

The frequent use of multiparameter flow cytometry in the clinical or research
laboratory together with the determination of a significant number of humoral
biochemical parameters from blood serum, urine, or spinal fluid of patients
generates a very substantial amount of information. Such information is only
selectively evaluated at present, for example, according to the frequency of
lymphocyte subpopulations, cell lineage assignments, abnormal immunopheno-
type, or cell activation marker description based on flow cytometric histograms
or flow cytometric list mode data, as well as according to humoral or clinical
parameters. Owing to the lack of suitable tools, the real potential of the multidi-
mensionality of the measured information remains largely inaccessible.

This situation is highly unsatisfactory, considering the theoretical potential of
cytometric information, for example, for the prediction of further disease course
inindividual patients. Cytometrically determined biochemical parameter patterns
from directly or indirectly affected cellular systems or organs are of substantial
interest for these purposes, because they are typically collected at the very spot
of disease action and should therefore represent prime information carriers for
disease course predictions, given the generation of diseases from biochemical
deviations in cellular systems or organs. Predictions are preferable to statistical
disease prognosis estimation. Although statistical disease prognosis is sufficient
for therapy development and monitoring, it is of little value for the individual
patient as well as for individualized therapy schemes.

The elaboration of general principles for disease course predictions in the
clinical environment constitutes an important challenge for optimization of a
patient’s disease management. There are multiple methodological choices for
the determination of structural or functional cell biochemical parameters and
also for data evaluation by mathematical result modeling or by algorithmic
principles. The task consists therefore of the rational selection of optimal biomo-
lecular parameter patterns and result evaluation strategies for predictive med-
icine.

The high amount of data from flow cytometric measurements prompted the
carlier development of the CLASSIF1 algorithm (Valet et al., 1993) to assure
the fast, exhaustive, and unbiased extraction of discriminant biomolecular data
pattern from any kind of flow cytometric or other multiparameter data on typical
personal computers, that is, out of hundreds or thousands of data columns.
CLASSIF1 data classifications require specific and precise measurements accord-
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ing to standardized methods, but no mathematical preconditions or assumptions
have to be fulfilled. The resulting classifiers are robust and interlaboratory porta-
ble. The intellectual analysis of the selected discriminant data patterns of the
classifiers favors scientific hypothesis formation through intuitive result presenta-
tion. Thus, large scale information extraction from multiparameter data is avail-
able, as an important precondition for individualized disease course predictions
in patients.

Data analysis may simultaneously concern flow cytometric, humoral biochemis-
try, or clinical patient data in order to determine the most discriminant parameter
pattern from the totality of the available information. In most instances, only a
comparatively small amount of the entire information, that is, typically between
0.5 and 20%, assures the required discrimination.

The use of neural network (Frankel er al, 1996, 1989; Boddy et al., 1994;
Molnar et al, 1993; Ravdin et al, 1993), principal component (Leary, 1994),
cluster (Verwer and Terstappen, 1993; Demers et al., 1992; Terstappen ef al,
1990; Schut er al, 1993), or discriminant and statistical (Davey et al, 1999;
Hokanson et al., 1999; Molnar et al., 1993; Rothe et al., 1990) analysis, hierarchical
classifiers (Decaestecker et al., 1996), classification and regression trees (CART,
Beckman et al., 1995), as well as knowledge based systems (Thews et al., 1996;
Diamond et al.,, 1994) or fuzzy logic (Molnar et al., 1993) describe major other
approaches to multiparameter data analysis in cytometry and in the clinical
laboratory. Difficulties of handling high parameter numbers, a need for mathe-
matical assumptions, nonintuitive result presentation, problems with missing
values, as well as complexity of implementation and operation have so far not led
to a widespread application of these methodologies in the clinical or biomedical
research environment.

It is the intention of this study to show the potential of the algorithmic
CLASSIF1 approach for multiparameter data analysis in various clinical condi-
tions.

II. Material and Methods

Clinical parameters, such as tumor thickness (TD, mm), tumor invasion depth
into skin layers (LE, Clark level), TK as the mean of TD + LE, tumor ulceration
(UL, 1 = no, 2 = yes) as well as flow cytometric DNA ploidy (euploid = 1,
aneuploid = 2), and percentage of S-phase cells, that is, a total of six parameters
were determined from surgery material and were available for 499 melanoma
patients who either had survived 10 years after tumor surgery (A) or died (B)
within this time period. The melanomas were localized on different parts of the
dermal integument. For flow cytometry, 20-100 mg of tumor tissue was minced
with a razor blade, incubated in a 2.1% citric acid, 0.5% Tween 20 solution for
20 min at 22°C, and centrifuged; the pellet was fixed with 70% ethanol, and
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resuspended in citric acid/Tween 20 solution. The cell nuclei preparation was
stained for 30 min in the presence of 1.75 ug/ml DAPI (4',6-diamidino-2-phenyli-
ndole) in a 7.1% Na,HPO, solution (Partec, Miinster, Germany) (Otto et al.,
1981). The DNA fluorescence of the cell nuclei was measured with a PASII flow
cytometer (Partec) using a HBO-100 high pressure mercury arc lamp with a UG1
(Schott, Mainz, Germany) fluorescence excitation filter and a GG435 (Schott)
fluorescence emission filter for the determination of DAPI fluorescence. The
coefficients of variation (CV) of the DNA distributions were between 1.5 and
3.1%, which is essential for the sensitive detection of DNA aneuploidy. The
S-phase fraction was calculated from the DNA distribution according to a rectan-
gular S-phase model.

Data from 40 juvenile asthma patients with a mean age of 10.00 £ 0.63 years
(2.4-16.5 years) and 18 healthy reference children with a mean age of 10.65 *
0.67 years (4.6-16.4 years) were processed. Available were 49 clinical chemistry
parameters per patient as well as 103 lymphocyte frequency and relative fluores-
cence intensity values obtained by quadrant statistics from two-color whole blood
lyse—nonwash direct mouse monoclonal antibody immunofluorescence assays
using the following antibody combinations: CD4/8, CD3/19, CD3/HLA-DR,
CD3/16+56, CD25/3, CD71/3, CD4/45RA, CD45R0O/4, CD62L/4, CD4/29,
CD57/8, CD8/11b, CD5/19, CD21/19, CD62L/20, 1gG1/1gG2. Furthermore, list
mode files from CD45/14, CD4/29, CD4/8, CD56/8, CD3/56, CD25/3, CD3/HLA-
DR, CD71/3, CD3/19, CD5/19, and IgG1/1gG2 assays, prepared as outlined, were
collected for 10,000 nucleated cells in flow cytometry standard (FCS) 1.0 format.
Measured were fluorescein isothiocyanate (FITC) and PE (phycoerythrin) immu-
nofluorescence as well as forward (FSC) and perpendicular (SSC) scatter light
with a Becton Dickinson FACScan (Becton Dickinson, Heidelberg, Germany)
flow cytometer.

C. HIV Infection

Data of two-parameter peripheral blood lyse—nonwash FITC/PE immunophe-
notype measurements (CD45/14, CD3/16+56, CD2/19, CD45RA/4, HLA-DR/
CDg, CDg&/38, CD26/8, and CD26/4) of seronegative or human immunodeficiency
virus (HIV)-infected seropositive patients were available as BD-FACScan (Bec-
ton Dickinson, Erembodegem, Belgium) list mode files as well as in the form
of a 23-parameter dBase3 data base containing percent cell frequency values,
manually extracted from two-parameter FITC/PE histograms, gated for lympho-
cytes by FSC/SSC.

D. Flow Cytometric List Mode Analysis

The list mode files were analyzed with the CLASSIF1 list mode analysis
software (Valet et al, 1993). In short, two-parameter FITC/PE histograms of




52. Triple Matrix Data Pattern Classification in Cytometry 491

FSC/SSC-gated lympho-, mono-, and granulocytes were evaluated by quadrant
analysis for percent cell frequency, FITC and PE fluorescence intensity, fluores-
cence ratio, and relative FITC and PE antibody (Ab) surface density (fluores-
cence/square root of FSC) of the various cell populations using fixed fluorescence
thresholds at one-third of the four decade logarithmic scale (channel 85 on a
256 channel scale). The FSC/SSC gates, in contrast, were autoadaptive for the
three cell populations such as to always comprise more than 95% of the nucleated
cells by nonoverlapping polygons. The calculated parameters of the FSC/SSC,
FSC/FITC, and FITC/PE histograms as well as of the four quadrants of the
FITC/PE histograms were data based (Valet and Hoffkes, 1997) such that 34
data columns per leukocyte population, that is, a total of 3 X 34 = 102 data
columns were available for lympho-, mono-, and granulocytes per measurement
instead of only 12 parameters in case of cell frequency evaluation. To remain
comparable with the cell frequency quadrant analysis, only data of single or
double fluorescence positive quadrants were further classified; in other words,
parameters of the fluorescence double negative cell population were not evalu-
ated. This reduced the available parameters in each two-parameter immunophe-
notype for lympho-, mono-, and granulocytes to 3 X 23 = 69 columns for the
subsequent data pattern classification.

E. Data Pattern Classification

The results of the three studies were classified with the CLASSIF1 data pattern
analysis algorithm (Valet and Hoffkes, 1997; Valet er al, 1993). The data were
a priori assigned to either the learning set or to the embedded test set, such that
patients 1, 5, 10, 15, . . . , of each classification category remained unknown to
the algorithm during the learning phase. The algorithm proceeds as follows:
Paired percentiles, for example, 10 and 90% percentiles for the value distributions
of the learning set reference samples in each data base column are determined.
Subsequently, all values of each data base column, that is, the values of the
reference as well as of the abnormal samples, are transformed into triple matrix
characters by assigning: ““—"" to values below the lower percentile, “0”’ to values
between the percentiles, and “+” to values above the upper percentile. The
resulting triple matrix replica of the numeric data base serves for the subsequent
iterative data classification.

The algorithm optimizes during the learning phase the sum of the diagonal
values of the confusion matrix, established between, for example, the known
disease categories of patients on the ordinate and the computer determined
classification of these disease categories on the abscissa. Ideally, that is, when
all samples are correctly classified by the algorithm, the values in each of the
diagonal boxes of the confusion matrix are 100%, while 0% values are encountered
in the nondiagonal boxes. Since this ideal condition is not present at the beginning
of the iterative optimization, the algorithm sequentially excludes either single
data base columns or paired combinations of columns with any other of the data
base columns temporarily from the classification process. Once all permutations
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have been processed and no further improvement is reached, data base columns
that had improved the classification result when excluded either alone or in
combination with another column are permanently disregarded for the classifica-
tion process; thus, only discriminant data base columns survive the selection
process. The most frequent triple matrix character for each of the selected data
columns of the learning set is entered into the classifier mask for each classification
category. The classifier mask of the reference samples contains typically only 0
values because 0 values are the most frequent triple matrix characters in the
value distributions of the reference samples from which the percentiles were
calculated; for example, for the 10/90% percentile pair, 80% of triple matrix
characters are 0, 10% are — and 10% are +.

The best possible classification is determined by successively classifying a data
set separately for the different percentile pairs 10/90%, 15/85%, 20/80%, 25/75%,
and 30/70% as well as cumulatively such that the most discriminant percentile
pair for each data base column is used for the finally learned classifier. The three
data sets on melanoma, juvenile asthma, and HIV infection were integrally
processed, that is, without exclusion of samples.

As a check for a learned classifier, each patient of the learning set is reclassified
according to the highest positional coincidence of the patient classification mask
with anyone of the classifier masks at the finally selected classification conditions.
Equal coincidence frequency for two classifier masks results in a double classifi-
cation. Double classifications may represent either a biological transition state
or a classification error, for example, in the case of small learning sets. The
reclassification of the learning set samples permits a quick visual check of the
sample triple matrices for systematic deviations (e.g., with time or on change of
reagents) from the classifier masks.

The quality of a learned classifier is judged in a standardized way by the
average recognition index (ARI) and by the average multiplicity index (AMI).
The ARI is calculated as the sum of the diagonal values of the confusion matrix
divided by the number of classification categories. It should be higher than
80% for clinical purposes. The AMI is a measure for the average frequency of
assignment of more than one classification category to a sample. The AMI is
ideally 1.00 in the absence of multiple classifications, and it is 1.1, 1.2, or 1.33 in
case every tenth, fifth, or third example on average is assigned a double classifica-
tion. AMIs between 1.0 and 1.2 are acceptable in practice. The AMI is calculated
as the sum of the classification values in all lines of the confusion matrix divided
by the number of classification categories, followed by a further division by 100.
All AMIs of the subsequent classification were always 1.00, that is, no multiple
classifications occurred.

The classification coincidence factor (CCF) indicates the coincidence of the indi-
vidual patient/sample classification triple matrix with the best fitting classifier mask.
The CCF is used to identify “unknown” sample classification masks that have a
lower CCF than the lowest CCF observed during the learning process. Low CCFs
may occur through inclusion of wrong samples, systematic errors during parameter
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measurement, or because of missing values. Although systematically deviating test
set samples are definitively rejected, samples with missing values are manually
classified according to the best positional coincidence with any one of the classifier
masks (e.g., patient 0001 in Fig. 2). No sample in all the processed samples of this
study had to be excluded because of systematic deviations.

III. Results

The 499-patient data set consisted in sequence of 135 male and 216 female
10-year survivor (A) and of 83 male and 65 female nonsurvivor (B) patients.
The first 75 male and 76 female (A) as well as 76 male and 64 female (B) patients
were selected as the learning set with the first unknown test set. The learning
set of 231 patients [59 male/61 female (A), 60 male/51 female (B)] contained
the first unknown test set of 60 patients [16 male/15 female (A), 16 male/13
female (B)] in embedded form as outlined in Section II,E. The remaining 208
patients [60 male/140 female (A) together with 7 male/1 female (B)] served as
the second unknown test set for the learned classifier. The total test set contained
268 patients.

The single-parameter sensitivity for correct nonsurvivor prediction was
checked prior to data pattern analysis as a reference for data classification im-
provement by data pattern analysis. Single parameter sensitivity at 90% specificity
for the identification of survivors was 53.7, 31.3, 50.9, 38.0, 38.1, and 21.7% for
parameters TD, LE, TK, UL, AN, and SP. Individually, the values were too low
for clinical predictions.

A first data pattern classification aiming at the discrimination of melanomas
according to their location on the dermis was not successful (results not shown).
In a second attempt it was investigated whether sex difference for survival existed
in the provided data set. Due to identity of the classifier masks for male and female
patients at the percentiles 10-90%, 15-85%, 20-80%, 25-75% and 30-70%, no
distinction for the available parameters exists between male and female patients
with regard to survival. Data from male and female patients can therefore be
classified together in the search for melanoma-dependent differences in post
tumor surgery survival (Table I). The impossibility of distinction between male
and female patients is indirectly reflected by closely similar means and SEMs for
each one of the investigated six parameters (Table II). Concerning the distinction
between 10-year survivor and nonsurvivor patients, the optimal classifier (Table
I) provides predictive values of 80.3% for survivors and 79.8% for nonsurvivors.
The selected classification parameters are increased TD, TK, and SP. Only half
of the provided parameters are selected for classification, although all six parame-
ters are significantly increased for nonsurvivors (Table II). The triple matrix
patterns of the three selected parameters for survivor (A) and nonsurvivor (B)
(Fig. 1) show that the classification result remains in many instances correct,
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Table I
Melanoma: 10-Year Survivors and Nonsurvivors

CLASSIF1 prediction (%)“

Number of Specificity/
Clinical outcome patients (n) Survivor Nonsurvivor sensitivity
A. Learning set
Survivor 120 81.7 18.3 81.7
Nonsurvivor 111 21.6 78.9 78.9
Negative/positive predictive values 80.3 79.8 ARI 80.0
B. First unknown test set
Survivor 31 80.6 194 80.6
Nonsurvivor 29 20.7 79.3 79.3
Negative/positive predictive values 80.6 79.3 ARI 80.0
C. Second unknown test set
Survivor 200 75.5 24.5 75.5
Nonsurvivor 8 12.5 87.5 87.5
Negative/positive predictive values 99.3 85.4 ARI 815

¢20->30% optimized percentile thresholds (data base MELA6.BI4/.BI6).

although not all three parameters coincide with the classifier mask for either
survivor or nonsurvivor. In other words, the individual patient classification is
robust against a certain degree of noncoincidence with the best fitting classifier
mask. The CCF is 0.67, that is, two out of three parametersv have to match with
the best fitting classifier mask for technically valid classifications.

The embedded first test set is classified with predictive values of 80.6% for the
31 survivors and with 79.3% for the 29 nonsurvivors (Table I). The second test set
is classified with predictive values of 99.3% for the 200 survivors and with 85.4%
for the 8 nonsurvivors (Table I). The classification of the two unknown test sets
shows that the CLASSIF1 classifier provides a robust classification of unknown
samples as an important quality criterion for multiparameter data classifiers.

Datapattern analysis of the clinical chemistry parameters provides asignificantly
better discriminatory result (Table I1I) than single parameter discrimination (Ta-
ble IV). A sensitivity of 70% for the recognition of asthmatic children at 100%
specificity for the identification of the healthy reference children is obtained. The
respective positive and negative predictive values, that is, the correct prediction
of the asthmatic and healthy children from the CLASSIF1 determined optimal
parameter pattern (Table I1I), are 100 and 60% for the learning set. Seven of the 49
clinical chemistry measurements [i.e., thrombocyte (TRCS) and eosinophil (EOS)
counts, aspartate aminotransferase (ASAT), thyroid-stimulating hormone (TSH),
ferritin, IgE, and B-globulin] were selected by the CLASSIF1 algorithm. The data
pattern classification of the clinical chemistry parameters for the test set patients
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MELANOMA :

CLASSIF1 TRIPLE MATRIX CLASSIFICATION

A.) RECLASSIFICATION OF LEARNING SET

NR. |CLASSIFIER CATEGOR. |CATEGORY ABBREVIAT. |COIN|CLASSIFIER MASKS
1 |SURVIVAL A 1.00{000
2 |DEATH B 1.00|+++
REC. |DATAB: MELA6.BI4 COIN|SAMPLE CLASSIF.MASKS
NR. |RECORD LABELS CLASSIF1-CLASSIFIC. [FACT| . = no value
2 47888. A A 1.00(000
3 49896. A A L6700+
4 51077. A A YRR
6 58306. A A 1.00{000
7 63220. A B L671++0
8 63231. A A 1.00{000
9 67200. A A 1.00(--0
11 74733, A B .67 |++0
12 76030. A A 1.00|---
13 77598. A B LO7 |-
153 46931. B B 1.00 +++
154 47071. B A 1.00(000
155 51680. B A 1.00/000
157 54535. B B .67 | ++0
158 70983. B B 1.00 | +++
159 77107. B B 67 | ++-
160 77913. B A .67|0+0
162 76475. B B 1.00 | +++
163 53494. B B 1.00|+++
164 71682. B B .67 | ++0
B) CLASSIFICATION OF UNKNOWN TEST SET
1 59083. ? A A .67 |00+
2 56627. 7 A A 1.00|0-0
3 74007. 7 A A 1.00|000
4 79931. 7 A A 1.00{000
5 59731. 2 A A 1.00(000
6 54563. 7 A A 67| -0+
7 53485. ? A B .67 ++0
8 63089. 7 A A 1.00{--0
9 62437. 7 A B 1.00|+++
10 75891. 2 A A 1.00|00-
32 54748, 7 B B 1.00|+++
33 53400. ? B B LO7 |4+
34 54520. 7 B B NYARa
35 80046. ? B B 1.00 | +++
36 74562. 7 B B 1.00| +++
37 77415. ? B B 1.00 [ +++
38 73113. ? B A .67 (0+0
39 71988. 7 B B 1.00|+++
40 56694. 72 B B 1.00|+++
41 57738. ? B A L6700+
|
pat-1D truth classification classification

hidden truth
during learning

coincidence factor (CCF)

phase
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Table III
Asthma: Blood Clinical Chemistry

CLASSIF1 classification (%)*

Number of Specificity/
Clinical diagnosis patients (n) Healthy Asthmatic sensitivity
A. Learning set
Healthy children 18 100.0 0.0 100.0
Asthmatic children 40 30.0 70.0 70.0
Negative/positive predictive values 60.0 100.0 ARI85.0
B. Unknown test set
Healthy children 6 66.7 333 66.7
Asthmatic children 10 30.0 70.0 80.0
Negative/positive predictive values 571 717 ARI 68.5

“25->30% optimized percentile thresholds (data bases GOERLI1.BI4/.BI6).

as compared to the learning set has a lower discriminatory potential with positive
and negative predictive values of 77.7 and 57.1% (Table I1I).

The means of six [8-globulin, [gG3, complement CH100 titer, T4, and leukocyte
(LKCS)] of the clinical chemistry parameters are significantly different between
asthmatic and nonasthmatic children (2p < 0.05, t-test). Significant mean value
differences do not necessarily parallel good discrimination potential. As shown
in Table I'V, only B-globulin has enough discriminatory potential for data pattern
analysis. This is further substantiated by systematic analysis of the discriminatory
potential of the statistically most significant single parameters such as 8-globulin,
by which asthmatic children are detectable with a sensitivity of 40.9% at 90%
specificity for the recognition of healthy children, similarly as, for example, IgG3
(41.1%), B-globulin (40.9%), and LKCS (38.9%). Statistically different parameters
may, however, also be low discriminating parameters, such as complement CH100
(22.5%) or T4 (19.0%). On the other hand, nonsignificantly different and low
discriminating single parameters may prove quite useful in data pattern analysis
such as ASAT (10.4%) (Table IV). '

Fig. 1 Melanoma classification for the known learning set (A) and the first unknown test set (B)
of patients using the classifier of Table 1. The classifications for the first 10 patients in each classification
category are displayed. Patient group A represents 10-year survivors, while patients in group B did
not survive. Patients are classified according to the best positional coincidence of the patient classifica-
tion mask with one of the two classifier masks. The three selected classification parameters are tumor
thickness (TD at position 1 of the classifier masks), the mean value of tumor thickness and tumor
infiltration depth (TK at position 2), and percentage of S-phase tumor cells (SP at position 3).
Classification is performed down to a CCF of =0.67, that is, to a positional coincidence of the patient
classification mask with the best fitting classifier mask for two of the three classification parameters.
The truth positions were left blank (?) for the test set patients (B) to make them invisible for the
CLASSIF1 algorithm during the learning process.
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Table IV
Asthma: Single Parameter Sensitivity and CLASSIF1 Classificator Masks of
Selected Clinical Chemistry Parameters

Classification
matrix
Classification parameters Single parameter sensitivity (%)
(selected from 49 parameters) at 90% specificity N A
1. TRCS 292 0 -
2. EOS 309 0 +
3. ASAT 10.4 0 -
4. TSH 31.0 0 -
5. Ferritin 233 0 -
6. IgE 35.0 0 +
7. B-Globulin 40.9 0 -

The classification (Table V) of manually evaluated flow cytometry histograms
for lymphocyte relative cell frequency (%) and relative antigen expression of the
16 two-parameter immunophenotypes indicates ideal classification with 100.0%
sensitivity/specificity and positive/negative predictive values for asthmatic and
healthy children. This classification is reached not only for the known learning
set (Table V), but equally for the unknown test set of patients (Table V); that
is, the classification is robust. The discrimination was achieved with data from
only four measurements (CD4/45RA, CD8&/11b, CD21/19, and CD71/3) (Table
VI), whereas the other 12 measurements provided less direct and redundant
information that resulted in exclusion during the selection process.

The classification of the list mode files included only partially the same mea-
surements as for the manually evaluated histograms. In particular the most

Table V
Asthma: Flow Cytometry by Cell Frequency and Fluorescence Infensity

CLASSIF1 classification (%)°

Specificity/
Clinical diagnosis Pat. (n) Healthy Asthmatic sensitivity
A. Learning set
Healthy children 19 100.0 0.0 100.0
Asthmatic children 39 0.0 100.0 100.0
Negative/positive predictive values 100.0 100.0 ARI 100.0
B. Unknown test set
Healthy children 6 100.0 0.0 100.0
Asthmatic children 9 0.0 100.0 100.0
Negative/positive predictive values 100.0 100.0 ARI 100.0

¢10->15% optimized percentile thresholds (data bases GOSLEARN.B14/.BI6).
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Table VI
Asthma: Selected Cell Frequency and Fluorescence Intensity Parameters*
Classification
matrix
Classification parameters (selected Healthy Asthma
from 103 lymphocyte parameters) (n = 19) (n = 39) Units N A
1. CD45RA Ab on CD47/CD45RA"Y 26.94 = 2.94 103.38 + 7.68° Arbitrary units 0 +
Iymphocytes
2. % CD47/CD45RA* lymphocytes 11.57 = 0.92 51.51 = 1.90° % of lymphocytes 0 +
3. CD4Ab on CD4*/CD45RA"- 115.31 = 7.88 26.59 = 1.60° Arbitrary units 0 -
lymphocytes
4. % CD4*/CD45RA™ lymphocytes 50.94 + 2.51 14.17 + 0.64° % of lymphocytes 0 -
5. % CD5*/CD19* lymphocytes 7.84 + 0.86 8.49 + 1.36° Arbitrary units 0 +
6. CD8 Ab on CD8*/CD11b"~ 67.16 = 7.79 37.62 = 3.61° % of lymphocytes 0 -
lymphocytes
7. CD45RO Ab on CD45RO*/CD4~ 41.36 + 6.51 26.17 + 435 % of lymphocytes 0 -
lymphocytes

“ Means = SEM.

b2p < 0.001, t-test.

discriminant measurements such as CD4/45RA, CD8/11b, and CD21/19 were
not available as list mode files. Nevertheless the same ideal 100.0% result for
sensitivity/specificity, positive/negative predictive values was obtained by the
exhaustive CLASSIF1 list mode evaluation of lympho-, mono-, and granulocyte
parameters for the learning set (Table VII) as well as for the unknown test set
patients (Table VII). A closer analysis of the selected classification parameters
(Table VIII), shows that 7 (CD45/14, CD3/HLA-DR, CD4/29, CD71/3, CD3/

Table VII

Asthma: Exhaustive Flow Cytometric List Mode Analysis

CLASSIF1 classification (%)"

Specificity/
Clinical diagnosis Pat. (n) Healthy Asthmatic sensitivity
A. Learning set
Healthy children 19 100.0 0.0 100.0
Asthmatic children 30 0.0 100.0 100.0
Negative/positive predictive values 100.0 100.0 ARI 100.0
B. Unknown test set
Healthy children 5 100.0 0.0 100.0
Asthmatic children 9 0.0 100.0 100.0
Negative/positive predictive values 100.0 100.0 ARI 100.0

“10->30% optimized percentile thresholds (data bases KHLEARN.BI4/.BI6).
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Table VIII
Asthma: Selected Parameters Exhaustive List Mode Analysis”

Classification parameters (sclected Classification
from 759 lympho-, mono-, matrix
granulocyte parameters of References

11 two color immunophenotypes) (n =19) Asthma (n = 30) Units N A

1. CD45Ab surf. dens.” on CD45* 0.233 = 0.007 0.170 = 0.012° Arbitrary units 0 -
lymphocytes
2. % CD3*/HLA-DR* lymphocytes 11.26 *= 1.58 3.66 + 0.31°¢ % of lymphocytes 0 -
3. HLA-DR Ab on CD3*/HLA-DR* 0.965 = 0.091 1.971 + 0.254¢ Arbitrary units? 0 +
lymphocytes
4. CD4 Ab surf. dens. on CD4* 0.132 = 0.005 0.095 =+ 0.006 Arbitrary units 0 -
lymphocytes
5. % CD71" lymphocytes 802 +£1.24 3.63 + 0.55¢ % of lymphocytes 0 -
6. CD3 Abon CD37/CD56* granulocytes  0.0894 = 0.0046  0.0461 = 0.0032  Arbitrary units? 0 -
7. CD56/CD3 Ab ratio on CD37/ 430 = 0.63 13.67 = 1.88° Arbitrary units 0 +
CD56" granulocytes
8. CD4 Abon CD47/CD29* granulocytes ~ 0.1000 = 0.0054  0.0475 = 0.0033°  Arbitrary units? 0 -
9. % CD25" granulocytes 78.28 = 4.51 11.10 + 2.93¢ % of granulocytes 0 -
10. CD19/CDS5 Ab ratio on CD57/ 1.66 = 0.24 451 = 1.76 Arbitrary units 0 +
CD19* granulocytes
11. % CDS5*/CD19™ granulocytes 42.80 = 6.53 597 = 2.38° % of granulocytes 0 -

4 Means = SEM.

b Ab surf. dens. = relative antibody surface density (linearized fluorescence/square root of forward light scatter).

€2p < 0.001, t-test.

4 Arbitrary unit: 0.001-10 V fluorescence scale, relinearized from the four decade log fluorescence scale of the flow
cytometer, ratio calculation from relinearized fluorescence values.

Fig. 2 Juvenile asthma patient classification for the first 10 patients of the'learning set (A) and
the five and nine patients of the test set (B) using the classifier of Table VII. Eleven classification
parameters were automatically selected by the CLASSIF1 algorithm from 759 data columns extracted
from the lympho-, mono-, and granulocyte cell populations of 11 FITC/PE immunophenotype list
mode files per patient (Table VIII). Parameters from seven immunophenotypes (CD45/14, CD3/
HLA-DR, CD71/3, CD3/16+56, CD4/29, CD25/3, and CD5/19) are required for the classification.
Classification is performed down to a CCF of =0.55, that is, to a positional coincidence of the -
classification mask of the patient with the best fitting classifier mask for 6 of the 11 classification
parameters. Patient 0001 of the test set is not classified (—) because of a CCF of 0.27 as a consequence
of missing values (.) by nonavailable list mode files. Due to coincidence for three positions with the
asthma classifier mask (A) and two with the mask of normal children (N), the patient was manually
classified as asthma for the test set classification (Table VII). The truth position for all test set
patients were left blank (?) during the learning phase as in Fig. 1.
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JUVENILE ASTHMA: CLASSIF1 TRIPLE MATRIX CLASSIFICATION

A.) RECLASSIFICATION OF LEARNING SET

NR. |CLASSIFIER CATEGOR. |CATEGORY ABBREVIAT. |COIN|CLASSIFIER MASKS

1T |NORMAL N 1.00{00000000000

2 [ASTHMA A 1.00|-~+=--+-vt-

REC. |DATAB: KHLEARN.BI4 CLAS |SAMPLE CLASSIF.MASKS
NR. |RECORD LABELS CLASSIF1-CLASSIFIC. |COIN| . = no value
40 0059 N N 1.00|+00++0-++-+
41 |0058 N N .64 00+000+0-0-
42 10061 N N 1.00|0+00000+000
43 10060 N N .82|0-000000-00
44 0064 N N .731000+000--0-
45 |0066 N N 1.000000+000000
46 0065 N N .55,0-00-00-0+-
48 0067 N N 1.00]00-00+0+0-+
49 10069 N N .64 | 0++0000-++-
50 {0070 N N .82|0-00-00000+

2 |0003 A A 55| +-0+-00- -+~

3 10004 A A L6b |+ -++00+- -+~

5 10008 A A 821044t -

6 |0009 A A 1.00)-~4---+--+-

7 |0010 A A 1.00|~=4---+--+-

9 10014 A A B ANEEE TE L SR
10 {0015 A A 1.00]~-4===-4--+-
12 {0018 A A 1.00] - ~4=m et
13 {0027 A A AR i e
14 {0030 A A 1.00|~~+---b-mi-

B) CLASSIFICATION OF UNKNOWN TEST SET

47 10068 7 N N .91 0+ -+0+-+4--
53 10073 ? N N .64|0-+0000-0++
58 (0078 ? N N .82100-+0000-0-
60 10080 ? N N .5510-+-000-0++
61 |0083 ? N N 1.00|0+00000+0-+
1 10001 ? A - 27 --+..00.. ..
4 10007 ? A A B2 H et
8 10012 ? A A 82| --+---0-0+-
11 {0017 7 A A 1.00] ~~d=mmdemit-
16 10032 ? A A bb |-+ -t- ..
21 {0037 ? A A 1.00]~-+-= 4=t~
26 0042 2 A A 91| -0t
31 (0048 ? A A 91|~ -40--4--+-
35 |0053 » A A 82| --4-0-+-0+-
pat-ID truth classification classification
hidden truth coincidence factor (CCF)

during learning phase
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Table IX
Asthma: Exhaustive List Mode Analysis of CD25/3

CLASSIF1 classification (%)”

Number of Specificity/
Clinical diagnosis patients (n) Healthy Asthmatic sensitivity

A. Learning set
Healthy children 20 100.0 0.0 100.0
Asthmatic children 31 3.2 96.8 96.8
Negative/positive predictive values 95.2 100.0 ARI 98.4
B. Unknown test set
Healthy children 4 100.0 0.0 100.0
Asthmatic children 8 12.5 87.5 87.5
Negative/positive predictive values 80.0 100.0 ARI 93.7

*10->>15% optimized percentile thresholds (data bases KOLEARN.BI4/.BI6).

56, CD25/3, and CD5/19) of the 11 measurements were required for classification.
The printout of the classification masks (Fig. 2) for the individual patients of
the learning and test sets indicates robustness of classification in case of partial
nonidentity between the patient classification mask and the best fitting classifier
mask. Minimally 6 of the 11 classifier parameters have to match with the selected
classifier mask to avoid sample rejection at the observed CCF of 0.55.

The separate classification of each individual two-parameter immunopheno-
type with simultaneous consideration of lympho-, mono-, and granulocyte data
shows that, for example, the analysis of the single CD25/3 immunophenotype
alone discriminates already quite well (ARI = 98.4%) between asthmatic and
nonasthmatic children in the learning set (Table IX) as well as in the unknown
test set patients (Table IX) with a selection of three cell frequency parameters
(Table X). Similar results were obtained for CD57/8 (ARI = 95.9%) and CD5/
19 (ARI = 95.9%).

Asthma: Selected Parameters Exhaustive CDD25/3 Analysis*

Classification parameters Classification
(selected from 69 lympho-, matrix
mono-, and granulocyte

parameters) Healthy (n = 20) Asthma (n = 31) N A

1. % CD25* granulocytes 7828 * 4.51 11.10 = 2.93% 0 -

b2

. % CD257/CD3* granulocytes 0.224 = 0.068 3.41 + 1.19°
3. % CD25%/CD3" granulocytes 947 + 3.16 2.65 = 1.19% 0 -

o}
-+

“Means = SEM (% of granulocytes).
b2p < 0.05, r-test.




52. Triple Matrix Data Pattern Classification in Cytometry 503

Table XI
HIV Infection: Flow Cytometry by Cell Frequency

CLASSIF1 classification (%)”

; Number of Specificity/
Clinical diagnosis patients (n)  Seronegative  Seropositive  sensitivity
A. Learning set
Seronegative 15 100.0 0.0 100.0
Seropositive 55 73 92.7 82.6
Negative/positive predictive values 78.9 160.0 ARI 96.4
B. Unknown test set
Seronegative 5 100.0 0.0 100.0
Seropositive 14 0.0 160.0 100.0
Negative/positive predictive values 100.0 100.0 ARI 100.0

“10-90% percentile thresholds (data base CD26TOT6.BI4/.B16).

C. HIV Infection

The classification (Table XI) of the 18 parameters from manual analysis of
two-color lymphocyte immunophenotype histograms, including the white blood
cell and lymphocyte counts (WBC, LYC), provides positive and negative predic-
tive values of 100.0 and 78.9% for HIV seropositive and seronegative patients
with similar values for the unknown test set patients (Table XI). The selected
three parameters (Table XII) involve CD45RA/4, HLA-DR/CDS, and CD8/38
immunophenotype measurements.

The exhaustive lympho-, mono-, and granulocyte parameter extraction by the
CLASSIF1 analysis provided average recognition between 96.1 and 100.0%
(ARI) at multiplicity indices between 1.00 and 1.02 (AMI) for the individual
evaluation of either the CD2/19, HLA-DR/CDS8, CD45RA/4, or the CD8/38
measurement. Evaluation of only the lymphocyte cell population provided ARIs

Table XII
HIV Infection: Selected Lymphocyte Frequency Parameters’
Classification
Classification parameters matrix
(selected from 18 lymphocyte/ Seronegative Seropositive
leukocyte parameters) (n = 15) (n = 55) Units N P
1. CD45RA*/CD4” lymphocytes 2353 = 1.94 8.14 + 0.83° % of lymphocytes 0 -
2. HLA-DR*/CDS8" lymphocytes 7.06 = 1.04 36.01 + 1.86° % of lymphocytes 0 +
3. CD8*/CD38* lymphocytes 13.60 = 1.04 45.01 + 2.30° % of lymphocytes 0 +

2 Means = SEM.
b2p < 0.001, r-test.
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HIV Infection: Exhaustive Flow Cytometric List Mode Analysis on Lymphocytes

(HLA-DR/CDS)

CLASSIF1 classification (%)”

Number of Specificity/
Clinical diagnosis patients (n)  Seronegative  Seropositive  sensitivity
A. Learning set
Seronegative 15 160.0 0.0 100.0
Seropositive 55 0.0 100.0 100.0
Negative/positive predictive values 100.0 100.0 ARI 100.0
B. Unknown test set
Seronegative 5 100.0 0.0 100.0
Seropositive 14 0.0 100.0 100.0
Negative/positive predictive values 100.0 100.0 ARI 100.0

“15-85% percentile thresholds (data base PRLEARN.BI4/.BI6).

of 100.0% for HLA-DR/CDS (Table XIII), 99.3% for CD45RA/4, and 97.8% for
CD8/38, all at 1.00 multiplicity. HLA-DR/CDS8 provided in addition positive and
negative predictive values of 100% for the HIV seronegative and the seropositive
patients in various disease states (seronegative n = 15, seropositive WHO stage
1/2/3/4 n = 21/9/14/11) for the learning set (Table XIII) as well as in the test set
patients (Table XIII) (n = 5/5/2/3/4). Four of the five selected parameters concern
antigen expression, relative antigen surface density, and antigen ratios and only
one concerns a percent cell frequency parameter (Table XIV). The listing of
the triple matrices for the individual patients (Fig. 3) indicates robustness of
classification for some degree of positional nonidentity between the patient classi-

Table XIV
HIV Infection: Selected HLA-DR/CDS8 Lymphocyte Parameters"
Classification
matrix
Classification parameters (selected from 22 Seronegative Seropositive
lymphocyte parameters (n = 15) (n = 55) Units N P

1. CDS§S Ab on CD8" lymphocytes 18.25 = 1.02 7.91 = 0.23° Arbitrary units 0 -
2. CD8 rel. Ab surf. dens. on CD8" 0.761 = 046 0.328 = 0.009°  Arbitrary units 0 -

lymphocytes
3. CD8 Ab on HLA-DR™/CD8" lymphocytes  18.01 = 1.04 7.63 = 0.22° Arbitrary units 0 -
4. CDS/HLA-DR Ab ratio on HLA-DR™/ 671.1 = 47.7 197.3 = 10.5° Arbitrary units 0 -

CDS8* lymphocytes
5. % HLLA-DR*/CDS8* lymphocytes 3.68 £ 0.51 24.12 + 1.44° % of lymphocytes 0 +

4 Means = SEM.

b2p < 0.001, r-test.
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HIV INFECTION: CLASSIF1 TRIPLE MATRIX CLASSIFICATION

A.) RECLASSIFICATION OF LEARNING SET

NR. |CLASSIFIER CATEGOR. |CATEGORY ABBREVIAT. |COIN|CLASSIFIER MASKS

17 |NORMAL N 1.00|00000
2 |SEROPOS P 1.00|~---+
REC. |DATAB: PRLEARN.Bl4 CLAS|SAMPLE CLASSIF.MASKS
NR. {RECORD LABELS CLASSIF1-CLASSIFIC. |COIN| . = no value
55 |KEOKO2 N N 1.00{00000
56 |KEOKO3 N N 1.00(0000-
57 |KEOKO4 N N .60/000-+
58 |KEOKO06 N N L80 | +++++
59 |KEOKO7 N N .80+t
60 |KEOKO8 N N 1.00|++++0
61 |KEQOKO9 N N 1.00|00000
62 |KEOK11 N N 1.00100000
63 [KEOK12 N N .601-0-00
1 IKE3756 P P 1.00|----+
2 |KE3758 P p 1.00{----+
3 |KE3759 P P 1.00|----+
4 |KE3766 P P 1.00)----+
5 |KE3767 P P 1.00----+
6 |KE3768 P P 1.00|----+
7 |KE3769 P P 1.00(----+
8 |KE3771 P P 1.00|~~--+
9 |KE3772 P P 1.00]--~~+
10 |KE3773 P P 1.00|----+

B) CLASSIFICATION OF UNKNOWN TEST SET

87 |KEOKO1 ? N N 1.00/00000
91 |KEOKO5 ? N N .80[0000+
96 |KEOK10 ? N N 1.00{000+-
101 |KEOK15 2 N N 1.00|00000
106 |KEOK20 ? N N 1.00{00000
17 |KE3755 ? P p 1.00(----+
21 |KE3765 ?P P 1.00|----+
26 |KE3770 ? P P 1.00{----+
31 |KE3776 7P P .80(----0
36 |KE3782 ? P P 1.00}----+
41 |KE3789 7P P 1.00}~~--+
46 |KE3795 ? P P 1.00|-=~-+
52 |KE3993 7P p 1.00|----+
57 |KE4001 2P P 1.00)----+
63 |KE4061 ? P p 1.00|--~-+
I |l
pat-1ID truth classification classification
hidden truth coincidence factor (CCF)

during learning phase

Fig. 3 Classification of the learning (A) and test set (B) of HIV seronegative (N) and seropositive
(P) patients using the classifier of Table XIII. Five parameters per patient were selected from 22
lymphocyte data columns of HLA-DR/CDS8 immunophenotype list mode analysis (Table XIV).
Classification is performed down to a CCF of =0.60, that is, to a positional coincidence for three of
the five classification parameters of the patient’s classification mask with the best fitting classifier mask.
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fication mask and the best fitting classifier mask. A minimum of three positional
coincidences with the selected five parameters classification matrix is required
(CCF = 0.60).

IV. Discussion

The three classification examples from unrelated clinical areas show the poten-
tial of data pattern classification for disease course prediction (melanoma) as well
as for a precise biomolecular diagnosis (juvenile asthma, HIV infection). Precise
diagnosis represents a precondition for the elaboration of predictive classifiers.

The predictive capacity of the melanoma classifier (Table 1) is similar to the
one for survival prediction in colorectal carcinoma patients (van Driel ef al,
1999) that is, lower than for the estimation of sepsis outcome in intensive care
medicine (Rothe ef al., 1990; Valet et al., 1998) as well as for the preoperative
prediction of postcardiotomy syndrome in children with open heart surgery
(Tarnok et al, 1997, 1999). This is caused by the comparatively small initial
parameter pattern of four clinical and only two flow cytometric parameters (Table
II). In spite of the few parameters, the classification of the 231 learning set
patients and especially of the 268 unknown test patients provides stable results.

When comparing the information content in the various measurements in
juvenile asthma and HIV infected patients, only a small fraction of the available
parameters contains the discriminant information. In juvenile asthma, the diag-
nostic information is encountered in 14.2% (7 of 49) of the clinical chemistry
parameters (Table IV), in 6.7% (7 of 103) of the lymphocyte analysis (Table VI)
provided by 4 of 12 FITC/PE immunophenotypes, in 1.4% (11 of 759) of the
parameters from exhaustive lympho-, mono-, and granulocyte analysis from 7
of 11 FITC/PE immunophenotypes (Table VIII), and in 4.3% (3 of 69) of the
parameters from single CD25/3 immunophenotype analysis (Table X). A similar
situation was encountered in the analysis of HIV infected patlents (16.6%,22.7%,
Tables XII and XIV).

The confinement of discrimination to relatively few biomolecular parameters
was similarly encountered in intensive care medicine for the determination of
cell function parameters (Valet ef al.,, 1993; Rothe er al., 1990) as well as for
immunophenotyping, in particular in lymphomas (Valet and Hoffkes, 1997), in
the expression of thrombocyte surface antigens for myocardial infarction risk
assessment (Valet et al., 1993), in the prediction of the postcardiotomy syndrome
in children (Tarnok et al., 1997, 1999), and in the early detection of the overtrain-
ing syndrome in competition cyclists (Gabriel ef al., 1993, 1998; Valet et al., 1993).

Considering the diversity of these diseases, the restriction of discrimination
to a relatively narrow biomolecular parameter pattern seems to represent a
more general rule. It comprises the potential for a significantly higher impact of
predictive and diagnostic achievements for the individual patient at equal efforts.
The advantage of data pattern analysis is that the discriminatory data pattern is




52. Triple Matrix Data Pattern Classification in Cytometry 507

References

provided in a standardized way, accessible to international efforts of consensus
formation and optimization as evidence based medicine (EBM) at a cellular level.

The results of the immunophenotype classifications in asthma (Tables VIII
and X) reemphasize the earlier observation of lymphoma immunophenotyping
(Valet and Hoffkes, 1997) showing that a significant amount of discriminatory
information is localized on granulocytes or monocytes although the antibody
panels are primarily selected for lymphocyte antigens. The reason for this seems
to be either reactive adaptation of existing nonlymphocytic cell populations to
the disease process or a reactively altered formation of cell populations by the
hemopoietic organs.

Concerning the issue of whether the evaluation of percent cell frequency
parameters is sufficient or whether the more complex quantitative analysis of
antibody binding is required, Tables VI, VIII, X, and XIV clearly show that a
substantial number of the discriminatory parameters are antibody intensity and
antibody binding ratios. It seems therefore mandatory to routinely evaluate
fluorescence intensities, fluorescence ratios, and in the future also coefficients of
variations for all cell population parameters in flow cytometric histograms.

Backed by the information provided in this chapter and from earlier results,
it seems clear that exhaustive information extraction from clinical multiparameter
flow cytometry measurements in combination with discriminant data pattern
analysis will constitute an important access route for disease course prediction
at the individual patient level. Although the currently presented classification
work concerns retrospectively prospective metaanalysis, it can be reasonably
assumed that the classifiers will perform equally well in prospective studies. This
hope is deduced from the observed robustness of classification of unknown
samples in all the various studies performed up to now with the CLASSIF1 algo-
rithm.

Beckman, R. J., Salzman, G. C., and Stewart, C. C. (1995). Classification and regression trees for
bone marrow immunophenotyping. Cytomerry 20, 210-217.

Boddy, L., Morris, C. W., Wilkens, M. F., Tarran, G. A., and Burkill, P. H. (1994). Neural network
analysis of flow cytometric data for 40 marine phytoplankton species. Cytometry 15, 283-293.
Davey, H. M., Jones, A., Shaw, A. D., and Kell, D. B. (1999). Variable selection and multivariate
methods for the identification of micrororganisms by flow cytometry. Cytometry 35, 162—-168.
Decaestecker, C., Remmelink, M., Salmon, I., Camby, L., Goldschmidt, D., Patein, M., Van Ham,
P., Pasteels, J. L., and Kiss, R. (1996). Methodological aspects of using decision trees to characterise

Leiomyomatous tumors. Cytometry 24, 83-92.

Demers, S., Kim, J., Legendre, P., and Legendre, L. (1992). Analyzing multivariate flow cytometric
dara in aquatic sciences. Cyfometry 13, 291-298.

Diamond, L. W., Nguyen, D. T., Andreeff, M., Maiese, R. L., and Braylan, R. C. (1994). A knowledge-
based system for the interpretation of flow cytometric data in leukemia and lymphomas. Cytometry
17, 266-273.

Frankel, D. S., Olsen, R. J,, Frankel, S. I, and Chisholm, S. W. (1989). Use of a neural net computer
system for analysis of flow cytometric data of phytoplankton populations. Cytometry 10, 540~550.



508

Giinter Valet et al.

Frankel, D. S., Frankel, S. L., Binder, B. J., and Vogt, R. F. (1996). Application of neural networks
to flow cytometry data analysis and real-time cell classification. Cytometry 23, 290-302.

Gabriel, H., Valet, G., Urhausen, A., and Kindermann, W. (1993). Selbstlernende Klassifizierung
durchfluBzytometrischer Listendaten von immunphénotypisierten Lymphozyten bei akuter kdrper-
licher Arbeit. Deutsche Zschr. Sportmedizin 44, 461-465.

Gabriel, H., Urhausen, A., Valet, G., Heidelbach, U., and Kindermann, W. (1998). Overtraining
and immune system: A prospective longitudinal study in endurance athletes. Med. Sci. Sporis
Exerc. 30, 1151-1157.

Hokanson, J. A., Rosenblatt, J. I, and Leary, J. F. (1999). Some theoretical and practical considera-
tions for multivariate statistical cell classification useful in autologous stem cell transplantation
and tumor cell purging. Cyfometry 36, 60-70.

Molnar, B., Szentirmay, Z., Bodo, M., Sugar, I., and Feher, J. (1993). Application of multivariate,
fuzzy set and neural network analysis in quantitative cytological examinations. Anal. Cell. Pathol.
5, 161-175.

Leary, J. F. (1994). Strategies for rare cell detection and isolation. In ““Methods in Cell Biology:
Flow Cytometry” (Z. Darzynkiewicz, J. P. Robinson, and H. A. Crissman, eds.), 2nd Ed., Part B,
Vol. 42. pp. 331-358. Academic Press, San Diego.

Otto, F. J., Oldiges, H., Gohde, W, and Jain, V. K. (1981). Flow cytometric measurementy of nuclear
DNA content variation as a potential in vivo mutagenicity test. Cyfometry 2, 188-191.

Ravdin, P. M., Clark, G. M., Hough, J. J., Owens, M. A., and McGuire, W. L. (1993). Neural network
analysis of DNA flow cytometry histograms. Cytometry 14, 74-80.

Rothe, G., Kellermann, W, and Valet, G. (1990). Flow cytometric parameters of neutrophil function
as early indicators of sepsis or trauma-related pulmonary or cardiovascular failure. J. Lab. Clin.
Med. 115, 52-61.

Schut, T. C. B., De Grooth, B. G., and Greve, J. (1993). Cluster analysis of flow cytometric list mode
data on a personal computer. Cytometry 14, 649-659.

Tarnok, A., Hambsch, J., Borte, M., Valet, G., and Schneider, P. (1997). Immunological and serological
discrimination of children with and without post-surgical capillary leak syndrome. In *“The Immune
Consequences of Trauma, Shock and Sepsis” (E. Faist, ed.), pp. 845-849. Monduzzi Editore, Bo-
logna.

Tarnok, A., Pipek, M., Valet, G., Richter, J., Hambsch, J., and Schneider, P. (1999). Children with
post-surgical capillary leak syndrome can be distinguished by antigen expression on neutrophils
and monocytes. In “Progress in Biomedical Optics, Proceedings Systems and Technologies for
Clinical Diagnostics and Drug Discovery 117 (G. E. Cohn and J. C. Owicki, eds.), SPIE Vol. 3603,
pp- 61-71. Int. Soc. for Optical Engineering, Bellingham, WA.

Terstappen, L. W. M., Mickaels, R. A., Dost, R., and Loken, M. R. (1990). Increased light scattering
resolution facilitates multidimensional flow cytometric analysis. Cyfometry 11, 506-512.

Thews, O., Thews, A., Huber, C., and Vaupel, P. (1996). Computer-assisted interpretation of flow
cytometry data in hematology. Cytometry 23, 140-149. :

Valet, G., and Hoffkes, H. G. (1997). Automated classification of patients with chronic lymphatic
leukemia and immunocytoma from flow cytometric three colour immunophenotypes. Cyfometry
(Commun. Clin. Cytometry) 30, 275-288.

Valet, G., Valet, M., Tschope, D., Gabriel, H., Rothe, G., Kellermann, W., and Kahle, H. (1993).
White cell and thrombocyte disorders: Standardized, self-learning flow cytometric list mode data
classification with the CLASSIF1 program system. Ann. N.Y. Acad. Sci. 677, 233-251.

Valet, G., Roth, G., and Kellermann, W. (1998). Risk assessment for intensive care patients by
automated classification of flow cytometric oxidative burst, serine and cysteine proteinase activity
measurements using CLASSIF1 triple matrix analysis. In “Cytometric Cellular Analysis” (J. P.
Robinson and G. Babcock, eds.), pp. 289-306. Wiley-Liss, New York.

Van Driel, B. E. M., Valet, G. K., Lyon, H., Hansen, U., Song, J. Y., Van Noorden, C. J. F. (1999).
Prognostic estimation of survival of colorectal cancer patients with the quantitative histochemical
assay of G6PDH activity and the multiparameter classification program CLASSIF1. Cyiometry
(Commun. Clin. Cytometry) 38, 176-183.

Verwer, B. J. H., and Terstappen, L. W. M. M. (1993). Automatic lineage assignment of acute
leukemias by flow cytometry. Cytometry 14, 862-875.




