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Background: The goal of this study was to evaluate a
self-learning algorithm for the computer classification of
information extracted from flow cytometric immunophe-
notype list mode files from high-grade non-Hodgkin’s lym-
phoma (NHL), Hodgkin’s disease (HD), and multiple my-
eloma (MM).

Materials and Methods: Bone marrow aspirates (BMA)
were obtained from untreated NHL (n = 51), HD (n = 9),
or MM (n = 13) patients. Bone marrow aspirates were not
infiltrated in NHL and HD patients as confirmed by thor-
ough histologic and cytologic investigation; however, MM
patients showed an infiltration rate >50% by malignant
myeloma cells. Peripheral blood leukocyte (PBL) samples
were taken from age-matched healthy volunteers (n = 44)
as easily available control material. A second control
group of 15 healthy volunteers, from whom BMA and PBL
samples were available, allowed us to differentiate
whether the observed classification results on malignant
samples were due to the malignant process or simply to
the inherent differences between BMA and PBL. Bone
marrow aspirates and PBL were analyzed by the same
immunophenotyping antibody panel (CD45/14/20, CD4/
8/3, kappa/CD19/5, lambda/CD19/5). The acquired list
mode data files were analyzed and classified by the self-
learning triple matrix classification algorithms CLASSIF1
following a priori separation of the data into a learning set
and unknown test set. After completion of the learning
phase, known patient samples were reclassified and un-
known samples prospectively classified by the algorithm.

Results: Highly discriminatory information was extracted
for the various lymphoma entities. The most discriminat-
ing information was encountered in antibody binding,
antibody binding ratios, and relative antibody surface den-
sity parameters of leukocytes rather than in percentage
frequencies of discrete leukocyte subpopulations. Sam-
ples from healthy controls were classified as normal in
97.2% of the cases, whereas those of NHL, HD, and MM
patients were on average correctly classified in 80.8% of
the cases.

Conclusions: Although no detectable lymphoma cells
were present in BMA of NHL and HD patients, the CLASSIF1
classification of the immunophenotypes of morphologi-
cally normal cells provided a surprisingly good disease
discrimination equal or better than that obtained by ex-
amining pathological lymph nodes according to the re-
spective literature. The results are suggestive for a lym-
phoma-related and disease-specific antigen expression
shift on normal hematopoietic bone marrow cells that can
be used to discriminate the underlying disease (specificity
of unspecific changes), i.e., in this case NHL from HD.
Multiple myeloma patients were discriminated by changes
on malignant as well as on normal bone marrow
cells. Cytometry 41:9-18, 2000. © 2000 Wiley-Liss, Inc.
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Classification of high-grade/aggressive non-Hodgkin’s
lymphoma (NHL) is typically based on the analysis of
histologic sections, supplemented by immunologic as well
as molecular and genetic markers (1). In the past, com-
parison of pathologic diagnoses has been influenced by
the use of different classification systems and, to an even
greater extent, by observer-dependent interpretation of

the results. The problem is that NHL is heterogeneous in
its clinical behavior, morphologic appearance, cellular
origin, etiology, and pathogenesis (2).
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A significant number of studies had the intention to
overcome the discrepancies of NHL diagnosis, but the
problem of reproducible histopathologic diagnosis (1,3)
remains unsolved because no diagnostic feature on its
own permits reliable discrimination. Furthermore, a con-
siderable overlap exists between the various diagnostic
features in NHL. Until now, molecular diagnosis has not
diminished the pathomorphologic pitfalls because a sub-
stantial fraction of NHL patients is negative or shows
overlaps for major cytogenetic findings.

The goal of this study concerned the discrimination of
noninfiltrated bone marrow aspirates (BMA) of NHL and
Hodgkin’s disease (HD) (<5% blast cells), as well as dis-
crimination of heavily infiltrated multiple myeloma (MM)
(>50% malignant cells) BMA against peripheral blood leu-
kocyte (PBL) samples of healthy individuals. Bone marrow
aspirates and PBL were immunophenotyped by a four-
tube, three-color assay (CD45/14/20, CD4/8/3, kappa/
CD19/5, lambda/CD19/5).

Data were analyzed and classified by algorithmic data
mining software (4-9) that exhaustively extracts the
information from multiparametric flow cytometry list
mode files. Lympho-, mono-, and granulocytic cell pop-
ulations according to their forward (FSC) and sideward
(SSO) light scatter characteristics were analyzed in con-
trast to the usual selective lymphocyte analysis. Further-
more antibody binding, antibody binding ratios, and
relative surface density of bound antibodies were eval-
uated in addition to typical percent cell frequency anal-
ysis by quadrant analysis of two-parameter fluorescence
histograms.

The underlying concept assumes that the exhaustive
data analysis of antigen expression on lympho-, mono-,
and granulocyte cell populations from nonoptimal im-
munophenotype panels provides sufficient information
for the discrimination of several malignant hematopoi-
etic diseases by relying on discriminatory information,
not only from malignant but also from normal bystander
cells. Normal cells can acquire specific abnormal fea-
tures as a reaction to the disease process either at the
stem cell level (altered differentiation) or by the altered
environment (adaptation). This strategy could lead to a
significant simplification of immunophenotyping panels
provided the vast amount of information can be ade-
quately processed. The concept differs from the usual
approach where changes in frequency of directly af-
fected cell populations by standard quadrant analysis of
optimized immunophenotype panels are investigated.
Because only a small fraction (1%-5%) of the available
information is evaluated, more and more complex im-
munophenotype panels are required to gather the nec-
essary amount of discriminatory information. This gen-
erates increasing problems of data complexity and
consensus formation amongst scientists, whereas the
new immunophenotype assay and data analysis concept
has the potential of significantly simplifying the discrim-
ination of malignant hematopoietic diseases.

MATERIALS AND METHODS
Patient and Sample Characteristics

Age-matched healthy volunteers and patients with NHL,
HD, and MM were included in this study after informed
consent had been obtained. Diagnostic specimens in-
cluded anticoagulated (heparin de-novo) BMAs obtained
by bone penetration with a Jamshidi needle from the
posterior iliac crest by standard technique (10) or PBL
samples obtained by venipuncture of the V. cubitalis.
Affected lymph nodes of NHL patients exhibited high-
grade centroblastic lymphoma according to the Kiel clas-
sification and HD patients showed mixed cellularity in
affected lymph nodes. The BMA of NHL and HD patients
were not infiltrated by lymphoma cells (<5% blast cells) as
confirmed by careful pathologic, cytologic, and immuno-
phenotype analysis, whereas BMA from MM patients were
heavily infiltrated and contained >50% myeloma cells.
The patients were divided into two analysis groups: the
learning set containing the BMA samples of 40 NHL, 9 HD,
and 13 MM patients as well as the PBL of 36 healthy
volunteers; the unknown test set for result verification
including BMA samples of 11 NHL patients and PBL of 8
healthy volunteers. The test set samples were a priori
selected as patients 1, 5, 10, 15, etc. of the respective
patient series. Test samples remained inaccessible during
the learning process, i.e., they were unknown to the
learned classifier.

The concept of the above data collection was to use
PBL as a simplified control assay as opposed to BMA
controls of healthy volunteers. It had first to be demon-
strated that this represents a valid approach. An indepen-
dent data set of 15 healthy volunteers with BMA and PBL
of the same persons was used for this purpose. The anti-
body panel, assay conditions, instruments setting, data
analysis, and learning procedure were identical for both
data sets. The comparison between BMA and PBL of
healthy volunteers provides a discriminant data pattern for
the difference in cellular antigen expression in both body
compartments. The prediction is that the use of PBL of
healthy volunteers compared to BMA samples of NHL, HD,
and/or MM patients shows malignancy-associated changes
that are significantly different from the standard BMA/PBL
differences of samples from healthy volunteers.

Immunophenotype Assays

Leukocyte concentrations in peripheral blood and bone
marrow samples were adjusted with phosphate-buffered
saline (PBS) to 5 X 10° cells/ml. Monoclonal antibodies
(10-20 p1/100 pl diluted blood) were added in pretitered
concentrations followed by vortexing and 30-min incuba-
tion at 0°C, interrupted by vortexing every 10 min. A
quantity of 2 ml Ortho-Lyse (Ortho, Heidelberg, Germany)
was subsequently added to the sample with immediate
vortexing, followed by 10 min incubation at 0°C for eryth-
rocyte lysis. The sample was washed twice by centrifuga-
tion (5 min, 400g) with 4 ml PBS, the supernatant was
discarded and the sediment resuspended in 2 ml PBS and
0.4 ml PBS/0.5% bovine serum albumin/0.1% Na acide and
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kept in the dark on ice until the flow cytometric measure-
ment.

Antibody Panel

Fluorescein isothiocyanate- (FITC) coupled monoclonal
CD45 (T29/33, IgG1 isotype; DAKO Diagnostika, Ham-
burg, Germany), kappa [rabbit anti-human F(ab")2, poly-
clonal; DAKO], lambda (rabbit anti-human F(ab’)2, poly-
clonal; DAKO], and CD4 (SK3, IgG1 isotype, Becton-
Dickinson,  Heidelberg, @ Germany) were  used.
R-phycoerythrin- (PE) coupled CD8 (SK1, IgG1 isotype,
Becton-Dickinson), CD14 (TUEK 4, 1gG1 isotype; DAKO),
and CD19 (4G7, IgGl isotype; Becton-Dickinson) were
used. Peridinin Chlorophyll A Protein- (PerCP) bound CD3
(SK7, IgG1 isotype, Becton-Dickinson) and CD20 (L27,
IgG1 isotype; Becton-Dickinson) were used. Phyco-
erythrin/Cyanine 5- (PE-Cy5) coupled CD5 (5D7, IgGl
isotype; Caltag Laboratories, San Francisco, CA) was used.
The CD45/14/20, CD4/8/3, kappa/CD19/5, and lambda/
CD19/5 combinations were analyzed for all samples.

Flow Cytometry

Cell samples were processed and measured within 2 h
after specimen collection. Analysis was performed on a
FACScan (Becton-Dickinson) analytical flow cytometer.
List mode data were acquired by the Lysis II software
(Becton-Dickinson). Fluorescence was excited during the
transition of cells through the focal spot of a 15-mW
air-cooled argon-ion laser at 488 nm in the sample beam of
the flow cytometer. The fluorescence of cell membranes
bound to FITC-, PE-, PerCP-, or PE-Cy5-labeled antibodies
was determined, as were the cellular FSC and SSC signals.

The instrument set-up was controlled daily with fluo-
rescent reference beads (FCSC, Research Triangle Park,
Raleigh-Durham, NC). The instrument set-up for fluores-
cence intensity and color compensation was monitored in
three ways: with lymphocytes from normal persons ac-
cording to the AUTO-comp software (Becton-Dickinson);
with CD4-FITC (SK3; Becton-Dickinson), CD8-PE (SKI;
Becton-Dickinson), and CD3-PerCP (SK7; Becton-Dickin-
son) triple staining of peripheral blood from normal do-
nors selected for erythrocyte or platelet transfusions; and
with standardized fluorescent beads (Fluoro Spheres,
DAKO).

Fluorescence was collected at 512-547 nm, 572-591
nm, and >610 nm in the FITC, PE, and PerCP/PE-Cy5
fluorescence light channels. Fluorescence compensation
was adjusted with hardware circuits. The amplification for
FSC and SSC signals was linear, whereas fluorescence
signals were amplified by four decade logarithmic ampli-
fiers. All data were collected as FCS 2.0 list mode files and
transferred to an IBM personal computer for automated
data classification.

List Mode Analysis

List mode analysis and result classification were per-
formed with the CLASSIF1 program system (Partec, Miin-
ster, Germany). Lympho-, mono- and granulocyte gates in
the FSC/SSC histogram were automatically set. The logi-

cally leading rectangular lymphocyte gate started with
predefined border distances to the left and right, as well as
to the upper and lower side of the lymphocyte peak (Fig.
1A and 1B). The monocyte gate touched the lymphocyte
gate with a total extension on the SSC ordinate of 1.5
times the lymphocyte gate. The granulocyte gate touched
the monocyte gate and extended until the high end of the
SSC ordinate. The left and right border of the monocyte
and granulocyte clusters were set in predefined distances
to the respective peaks. The autogating function was
capable of correctly gating all list mode files (468 files) of
the learning and test set without human interference. The
outreach of the left and right borders of the evaluation
windows was such that, on average, >95% of all leuko-
cytes were enclosed in the three light-scatter evaluation
windows.

The two separation lines determining the quadrants in
the FITC/PE, FITC/PerCP, or FITC/PE-Cy5 and the PE/
PerCP or PE/PE-Cy5 histograms were fixed for all evalua-
tions at one-third of the fluorescence scale in abscissa and
ordinate direction. Fluorescence histograms were evalu-
ated for the FSC/SSC gated lymphocytes, monocytes, and
granulocytes separately as three-dimensional cubes (not
shown) and two-parameter histograms (Fig. 1C and 1D),
i.e., the results of nine two-parameter fluorescence histo-
grams per measurement were available. Seventy-four pa-
rameters (6) were extracted for the lymphocyte and sim-
ilarly for the monocyte and granulocyte cell populations,
i.e., 222 parameters for the joint evaluation of all three cell
populations per one three-color measurement. A total of
4 X 222 = 888 database columns were extracted for each
patient with four antibody triplet measurements. Al-
though the analysis concerned lympho-, mono- and gran-
ulocytes in PBL, the corresponding BMA samples com-
prise a very substantial number of cell types
(erythroblastic, lymphoblastic, monoblastic and myelo-
blastic cells, as well as megakaryocytes). Except for CD45-
negative erythroblasts, it is not possible to differentiate
them properly. In analogy to PBL, they are operatively
addressed as lympho-, mono- and granulogate cells based
on their FSC/SSC characteristics.

Data Classification

Expert histopathologic examination of patients’ lymph
node specimens according to the REAL (1) and Kiel (11)
classification served as “clinical truth” for the subsequent
learning process. Learning proceeds shortly as follows:
The program determines percentile pairs, e.g., 10% and
90% percentiles for the value distribution of the reference
samples of each of the database columns. All values of
each database column, i.e., from reference and abnormal
samples, are subsequently transformed into triple-matrix
characters by assignment of 0 to values between the
percentiles, + to values above the upper, and — to values
below the lower percentile. A triple-matrix replica of the
numeric database is available after this data transformation
step. The confusion matrix between the known clinical
diagnosis of the learning set patients on the ordinate and
the computer classification of the cytometrical database



12 BARTSCH ET AL.

Normal Peripheral Blood | eukocytes against

Multiple Myeloma Bone Marrow (CD4/8/3)

6
I

2
100

12 510" 51072 B10°2 510"

e,
= . e v

10°0 510'2 510'2 5107 5 10°

CD4-FITC

Fig. 1. Automated forward scatter/sidescatter (FSC/SSOlympho-, mono-, and granulocytic cell population gating of a CD4/8/3 assay for a normal
peripheral blood leukocyte (A) and a multiple myeloma bone marrow aspirate (B) sample at fixed quadrant evaluation windows (C, D) at 1/3 of the
respective four decade logarithmic flourescence scales. The three decade logarithmic amplitude display, i.e., three contour lines per decade, assures the

display of all histogram channels with two and more cells/channel.

parameters on the abscissa is optimized during the subse-
quent learning process using the triple-matrix database.
The values in each diagonal box of the confusion matrix
are ideally 100% and 0% in the nondiagonal boxes follow-
ing correct classification of all patient samples. This is not
the case in the beginning of the iterative optimization
procedure. The program temporarily removes single data-
base columns or combinations of two database columns in
all permutations from consideration, followed each time
by a recheck of the classification result. The iteration
stops upon completion of all possible combinations. Da-
tabase columns whose temporary removal either alone or
in combination had improved the sum of the diagonal
values are then permanently removed.

Following the learning process, each patient sample of
the learning set is reclassified according to the highest

positional coincidence of its triple matrix with the classi-
fier masks. The quality of the overall classification is
judged in a standardized way by the average recognition
index (ARID) and the average multiplicity index (AMI). The
ARI represents the sum of the diagonal values of the
confusion matrix divided by the number of classification
states. It should be higher than 80% for clinical purposes.
The AMI is a measure for the assignment of more than one
classification state to a sample. The AMI is ideally 1.00 in
the absence of multiple classifications and 1.1, 1.2, 1.33
when every tenth, fifth, or third example on average is
assigned a double classification. Average multiplicity indi-
ces of 1.0-1.2 are acceptable in practice. The AMI is
calculated as the ratio between the sum of all line sums of
the confusion matrix divided by the number of classifica-
tion states and then by 100. The quality criterion for the
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Table 1
Optimized Discrimination between NHL/HD/MM/PBL
Normal (A) and BMA Normal/PBL Normal (B) using
Various Combinations of Lympho-, Mono-,
and Granulocytes”

CLASSIF1 Percentiles
Cell population classifier ARI (%) AMI (%)
A. NHL/HD/MM/PBL normal
lym+mon+gran  A7LEARN 87.9 1.05 20/80
lym+mon ASLEARN 90.5 1.04 25/75
lym+gran A9LEARN 84.9 1.01 15/85
mon+gran AALEARN 89.6 1.03 20/80
lymphocytes ABLEARN 84.2 1.07 25/75
monocytes ACLEARN 80.5 1.08 15/85
granulocytes ADLEARN 79.7 1.07 20/80
B. BMAnormal/PBL normal
lym+mon+gran  KSLEARN 96.7 1.00 10/90
lym+mon LALEARN 96.7 1.03 10/90
lym+gran LCLEARN 96.7 1.00 15/85
mon-+gran LBLEARN 90.0 1.00 15/85
lymphocytes KTLEARN 93.0 1.00 15/85
monocytes KULEARN 90.0 1.00 20/80
granulocytes KVLEARN 97.3 1.00 10/90

“NHL, non-Hodgkin’s lymphoma; HD, Hodgkin’s disease; PBL,
peripheral blood leukocytes; BMA, bone marrow aspirate; lym,
lymphocyte; mon, monocyte; gran, granulocyte.

selection of a particular classifier is the highest ARI at the
lowest AMI. The classification coincidence factor (CCF)
indicates the degree of positional coincidence between
the sample classification mask and the classifier masks.

RESULTS

The list mode data analysis shows the adaptation in the
FSC/SSC gates that limit the lympho-, mono- and granulo-
cyte populations in an automated and observer-indepen-
dent way (Fig. 1A and 1B). It also shows the fixed position
of the quadrant analysis windows (Fig. 1C and 1D) for the
two-parameter fluorescence histogram projections.

The classification was performed with the joint infor-
mation of the four antibody triplets for lympho-, mono-
and granulogate cell populations either separately or in
various combinations (Table 1). This was followed by the
separate classification of the results of each antibody trip-
let jointly for lympho- + mono- + granulogate cells. The
discriminatory capacity of the various classifiers was
judged by their ARI and AMI values.

All classifications of NHL, HD, and MM patients and
healthy volunteers were performed at the 10/90%, 15/
85%, 20/80%, 25/75%, and 30/70% percentile pairs. The
best discrimination of the NHL/HD/MM/PBL normal data
set was achieved for the lympho- + granulogate classifier
at the 15/85 percentiles, which identified normal and
abnormal samples with 84.9% ARI at 1.01 AMI (Table 1A).

The separate classification of single antibody triplets for
lympho-, mono-, and granulocyte cell populations pro-
vided less discriminatory results (data not shown), indi-
cating the necessity for the presence of a sufficient
amount of relevant classification information for which

the information from a single antibody triplet is not suffi-
cient.

The discrimination between BMA and PBL samples both
taken from the same person within a separate group of 15
normal individuals provided 96.7% (ARID) correct recogni-
tion at 1.00 AMI (Table 1B) for the 15/85 percentile
classification; that is, 14 of 15 BMA and 15 of 15 PBL
samples were correctly classified. This shows the useful-
ness of data-pattern classification for an objective BMA
quality assessment.

The display of the confusion matrix for the NHL/HD/
MM/PBL normal classification (Table 2A) indicates posi-
tive/negative predictive values of 94.1, 70.0, 91.6/83.3%
for the classification. This result is confirmed by the clas-
sification of the unknown test set samples (Table 2B) that
are similarly classified, i.e., the CLASSIF1 classification is
robust towards unknown samples.

The display of the reclassification list (Table 3) of the
first 10 samples in each classification category (PBL nor-
mal/NHL/HD/MM) shows the differences between the
classifier masks (top of rightmost column) as well as
among the individual patient classification masks set
(lower part of this column). The patient classification
masks do not show systematic changes with time as man-
ifested by increasing patients numbers, and the classifica-
tions are robust against partial positional noncoincidences
between patient classification and the selected classifier
mask as indicated by CCFs <1.00. Most of the samples are
correctly classified although none of them coincides fully
with the respective reference classifier mask.

Only 38 data columns (Tables 3 and 4A), i.e., 7.4% of
the 512 parameters, were informative for the classification
of the clinical patient status and therefore included into
the classifier masks. The selected parameters of the clas-
sifier masks consisted of 17 lympho- and 21 granulogate
parameters. Beside percentage frequency of cells (n =
17), antibody binding (n = 11), antibody binding ratios
(n = 7), and relative antibody surface density parameters
(n = 1) were selected as discriminatory parameters.

Three of the selected data columns contain the differ-
ences between normal BMA and normal PBL, which is
represented by the increased presence of CD45-negative
erythropoietic cells in BMA. Seven columns contain the
discriminatory information between healthy individuals
and patients with malignant disease; the remaining 28
columns discriminate among the various malignant dis-
eases. The information for the discrimination between the
noninfiltrated BMA (NHL, HD) is located in 14 parameters
as opposed to equally 14 parameters for MM patients. The
exact relevance of the various discriminatory parameters
(Table 4) for the disease processes is not understood at
the present time. Nevertheless, a few characteristic fea-
tures can be described.

Hodgkin’s disease is distinguished from NHL mostly by
parameters of the CD45/14/20 antibody triplet, whereas
the infiltrated MM BMA samples are preferentially discrim-
inated by CD4/8/3, kappa/CD19/5, and lambda/CD19/5
parameters. It is interesting that parameters of granulogate
cells constitute a significant part of the selected discrimi-
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Table 2
Discrimination of NHL/HD/MM from Lymphbo- and Granulocyte Parameters of
CD45/14/20, CD4/8/3, k/CD19/5, I/CD19/5 Immunophenotypes”

CLASSIF1 CLASSIFICATION (%)

Patients

Clinical truth (n) PBL normal NHL HD MM
A. Learning Set

PBL normal 36 97.2 2.8 0.0 0.0
NHL 40 15.0 80.0 7.5 0.0
HD 9 0.0 11.1 77.8 11.1
MM 13 15.4 0.0 0.0 84.6
Neg/pos predictive values 83.3 94.1 70.0 91.6
B. Unknown Test Set

Normal 8 100.0 0.0 0.0 0.0
NHL 11 9.1 72.7 18.2 9.1

A9LEARN classifier, 15/85% percentiles, ARI = 84.6%, AMI = 1.01.
“NHL, non-Hodgkin’s lymphoma; HD, Hodgkin’s disease; MM, multiple myeloma; PBL,

peripheral blood leukocytes.

natory data pattern, indicating that these cells carry infor-
mation for malignant affections of the lymphatic system.
Hodgkin’s disease is characterized by an increase of
CD45/14-positive granulogate cells, increased CD19 on
CD19-negative lymphogate cells, decreased CD19 expres-
sion on CD19-positive lymphogate cells, and decreased
CD4 and kappa expression. Non-Hodgkin’s lymphoma ex-
hibits increased CD14/45 ratios and CD20 on CD45-posi-
tive and -negative granulogate cells.

Infiltrated MM BMAs are characterized by decreases of
FSC on CD4-negative and CD3-negative, as well as on
CD8-positive lymphogate cells. They also are character-
ized by decreases in the percentage of granulogate cells
and of CD19 on CD19neg/5pos as well as on CD19pos/
S5pos granulogate cells. At the same time, increases of
CD14/45 ratios on CD45neg/14pos, of percentage
CD45neg/14neg, of percentage CD19pos/5pos, and of
percentage CD45neg/20pos granulogate cells are ob-
served.

The classification of the unknown test set (Table 2B)
was restricted to normal and NHL samples due to the
comparative infrequent availability of HD and MM sam-
ples. Bone marrow aspirates from 11 NHL patients with-
out bone marrow infiltration and PBL samples from eight
healthy normals were chosen from the initial data set as
described in Materials and Methods and classified with the
lympho- + granulogate classifier ADLEARN of Table 1. The
classification results (Table 2B) show that normal samples
were even better recognized (100.0%) than in the learning
set (97.2 %, Table 2A). The classification of NHL test set
patients (Table 2B) showed a similar overlap with the
other classification states as in the learning (Table 2A) at a
somewhat reduced recognition rate of 72.7% as opposed
to 80.0% for the learning set.

DISCUSSION

The aim of this study was to explore the discriminatory
potential of flow cytometric immunophenotypes of nor-
mal cells in the noninfiltrated BMA of NHL and HD pa-
tients as opposed to >50% infiltrated BMA of MM patients.

This approach was encouraged by the earlier finding that
the most discriminatory parameters for NHL classification
were not the expert-defined and expected parameters on
malignant cells like the relative cell frequencies of lym-
phogate subpopulations or the light-chain restriction on
these cell populations (12,13). Instead, the most discrim-
inatory parameters were total amount of cellular antigen,
relative antigen density, and antigen ratio parameters on
malignant and normal cells as identified by self-learning
computer classification of exhaustively analyzed flow cy-
tometric multicolor immunophenotype list mode data (6).

The requirement for automated classification of mul-
tiparametric flow and image cytometry represents an in-
creasingly important challenge. The traditional computer-
assisted manual interpretation of flow cytometric
histograms is self-limiting due to the inherent complexity
of multiparametric data and to the large number of possi-
ble permutations in antibody combinations. The advan-
tage of the triple-matrix classification algorithm, used for
the analysis of complex immunophenotype results (4-9)
consists in the generation of standardized, i.e., interlabo-
ratory, portable classifiers that are robust to the classifica-
tion of samples from unknown patients.

The selected classification parameters (Table 4) provide
an intuitive access to the understanding of the disease
discriminating parameters because they consist of a pat-
tern of unmodified database parameters that can be in-
creased (+), decreased (—) or unchanged (0) as compared
to the reference patients. No prior knowledge of the data
distribution is required and no underlying mathematical
assumptions, e.g., on value distribution functions, have to
be made for the classification process. The validity of the
classification process depends only on representative and
clinically well-characterized learning sets, on specificity
and quality of the reagents for antigen staining, and on
day-to-day intralaboratory measurements precision. The
triple-matrix classification approach is therefore not more
demanding with respect to the requirements for flow
cytometric quality control and standardization than other
classification methodologies (14 -16).
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Table 3
Reclassification of the Learning Set
CLASSIFIER CATEGORY | CLASS CLASSIFIER
NR | CATEGORIES. ABBREVIAT | COINC MASKS
1 normal N 1.00 00000000000000000000000000000000000000
2 non-Hodgkin lym. | NHL 1.00 -+0+0-000- -+00-00- - 00+ - ++0+-+----+-000
3 Hodgkin's lym HD 1.00 ~++++-0-0+-+0+-++--0+0-0+-+-+----0-0--
4 multiple myeloma | MM 1.00 -+0+00-0-00+---++0-+++-0+0-000--+00+-0
RECORD
LABELS CLASSIF1 CLASS SAMPLE
DATABASE CLASSIFI- COINC CLASSIFICATION MASKS
NR | ASLEARN.BI4 CATION FACT = no value
41 PAQOO1 N N 0.55 0+0+000-000.0++000+. . .00+0+-+-00..-+00
42 PADOOO2 N N 0.84 00000000000000-0000. ..00-00+-000. .000+
43 PAOOO3 N N 0.63 0+0+000000000--+0--0..-00+0000--..0000
44 PAQCOO4 N N 0.76 +0000+000++.00000000. . 000+-0000-+00+-0
45 PAOO06 N NHL 0.63 0+0+00-00000-0000- -+. . -++0+-+---+00000
46 PA00O7 N N 0.74 +0000+-0-00+0-0++00+. .0000-0000000000+
47 PAOCO8 N N 0.58 -0+0+-0----.00-0+0+-..0000+0000+..0000
48 PAOO0O9 N N 0.79 0000000+000.0000+000. .00+00-+0000+0000
49 PACO11 N N 0.63 0++++0-0-+0.-000000. . .000+000000. .00060
50 PAOO12 N N 0.87 00000+00000.0000+0+0. .00000000000+0000
1 PA0046 NHL NHL 0.79 -+0+0-000-0+0--0+--0..-++00-+----+-+0-
2 PA0047 NHL NHL 0.61 0++++0000-00-0-0+--0..-++00-+---00-+0-
3 PA0048 NHL NHL 0.66 -000000000-+0+-00--0..-0+0++-+0-0+-000
4 PAQ049 NHL NHL 0.66 -+0+000-000.0+-00--00+-+000000- - - -0000
5 PA0051 NHL NHL 0.68 -+0+0--0---.-0-00--0..-++00-+---..0+-0
6 PA0052 NHL N 0.66 0+0+0000000.000++000. . -++00000-0..0000
7 PAQ0053 NHL N 0.76 000000000-0000000-00. . -++0000000+0-000
8 PAO054 NHL NHL 0.63 0+0+0000000.00-+0--0..-++0--+---_ . 0+-0
9 PAQ056 NHL NHL 0.66 0+0+0000000+00-00-00..-0000-+---..+000
10 PAD0S57 NHL N 0.61 -++++-0-00-.0- -+0++0. .0+0+000000000000
77 PA0QQ6 HD HD 0.61 -++++-+000-++00+000- . .00+-+-+----+-00-
78 PA0O097 HD HD 0.53 -+4+++-+0++-++00++00.0+00+-+-+-00- -0000
79 PA0098 HD HD 0.68 -++++-0-00- .0+0++00...000-+-+---..-0--
80 PAO0Q9 HD HD 0.71 -++++-0-0--+0+-00--+00-++-+-+0--..---0
81 PA0101 HD HD 0.68 B A A b e R L (E
82 PA0102 HD NHL 0.61 0+0+0-0-0- -+0+-+0- ~++0-+00+000- -+00-00
83 PAO103 HD MM 0.50 -+0+0----0-.-+-+0--0+0-+00+00+-0..0-0+
84 PA0104 HD HD 0.68 -++++-000+- .000++000. .00++0-+---00-0--
85 PA0106 HD HD 0.66 -+0+0-000+-+-0-++--0..-0+-0000--..-0--
86 PAO107 MM MM 0.58 0+0+0000000+0+-++0-0..-000+000-0..-0--
87 PA0109 MM N 0.66 0+0+00-0000. - -000000. . -00+0-+0-0+00000
88 PA0110 MM MM 0.68 -+0+00-0--00---++--+..-000--+---0+0+- -
89 PAO111 MM MM 0.68 -+0+0000000+0--000-0..0000-000--..0+-0
a0 PA0112 MM MM 0.66 0+0+00-0--00---++000..000+-000--..0+00
91 PAO114 MM MM 0.66 0+0+00-0-00+-+-++000. .00++0000-0..0+00
92 PAG115 MM MM 0.55 -+040--0---+-+-++0--,,-00-++-+-0..0--0
a3 PA0116 MM MM 0.66 -+0+0--0---+-+-++0-00+00+00000- - . . -000
94 PAO117 MM N 063 0+0+000-00000+-00- -+0+-+-0-+-+-0+0+-00
g5 PA0119 MM MM 0.74 -++4+0---00+---+0- -++0-++0-000--0+-+-0

The reduction of the classification parameters to the
most informative parameters avoids the problem of statis-
tically overdetermined learning sets. The number of 888
(lympo-, mono- and granulocyte), 512 (lympho- granulo-

cyte, lympho- monocyte, mono- granulocyte) or 222 (lym-

phocyte, monocyte, granulocyte) database columns as
classification parameters in the initial data set (Table 1) is
substantially higher than the number of patients in the
different groups, but the number of finally selected pa-
rameters (n = 38/19) (Tables 3, 4A, and 4B) is substan-
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Table 4
Parameter Pattern of the Lymphocyte/Granulocyte NHL/HD/MM/PBL Normal Classification with Four Three-Color Assays”

Classification Parameter changes
mask
parameter Cell parameter PBL NHL HD MM
A. BMAnormal/PBL normal Discrimination
1 % lympho (CD45/14/20 assay, BMA/PBL par#3) 0 - - -
2 % CD45neg in lymphogate (BMA/PBL par#1) 0 + + +
4 % CD45neg/CD14neg in lymphogate (BMA/PBL par#2) 0 + + +
B. Malignancy indicators
15 CD19 on CD19pos/CD5neg lymphogate 0 - - -
19 CD45 rel.surf.dens on CD45pos granulogate 0 - - -
23 CD45 on CD45pos/CD14neg granulogate 0 - - -
31 CD14 on CD14neg/CD20neg granulogate 0 - - -
32 % CD14pos/CD20neg in granulogate 0 - - -
12 % CD45neg/CD20pos in lymphogate 0 + + +
25 CD8/CD4 ratio on CD4pos/CD8neg in granulogate 0 + + +
C. Malignancy discriminators NHL/HD
3 % CD14pos in lymphogate 0 0 + 0
5 % CD45pos/CD14pos in lymphogate 0 0 + 0
14 CD19 on CD19neg/CD5pos in lymphogate 0 0 + -
16 CD5/CD19 ratio on CD19pos/CD5neg in lymphogate 0 0 + +
17 CD5/lambda ratio on lambda pos/CD5neg in 0 0 + +
lymphogate
21 CD45 on CD45neg/CD14pos in granulogate 0 0 + +
8 CD4 on CD4pos in lymphogate 0 0 - 0
26 kappa rel.surf.dens on kappa pos in granulogate 0 0 - 0
37 CD19 on CD19pos/CD5pos in granulogate 0 0 - -
38 CD5/lambda ratio on lambneg/CD5pos in granulogate 0 0 - 0
22 CD14/CD45 ratio on CD45neg/CD14pos in 0 + 0 +
granulogate
24 CD14/CD45 ratio on CD45pos/CD14neg in 0 + 0 0
granulogate
34 CD20 on CD45neg/CD20pos in granulogate 0 + 0 0
10 CD8/CD4 ratio on CD4pos/CD8pos in lymphogate 0 - + 0
D. MM
7 FSC CD4neg in lymphogate 0 0 0 -
9 FSC CD8pos in lymphogate 0 0 0
13 FSC CD3neg in lymphogate 0 0 0 -
20 % CD45neg/CD14neg in granulogate 0 0 0 +
36 % CD19pos/CD5pos in granulogate 0 0 0 +
6 % lymphogate cells (CD8/4/3 assay) 0 - - 0
11 % lympho kappa/CD19/5 in lymphogate 0 - 0
18 CD45 on CD45pos in granulogate 0 - - 0
28 % lambda neg in granulogate 0 0
30 % lambda neg/CD19neg in granulogate 0 - - 0
35 CD3 on CD8neg/CD3pos in granulogate 0 - - 0
33 % CD45neg/CD20pos in granulogate 0 - - +
27 % granulogate cells 0 + + -
29 % lambda pos in granulogate 0 + + 0

“A9LEARN classifier, 15/85% percentiles, 38 of 512 available lympho- and granulogate cell parameters (7.4%) contain the discrimina-
tory information. The triple matrix characters in the last column represent the classifier masks of Table 3 (top of the rightmost column
of reclassification list). The parameters of the table are realigned in comparison to Table 3 according to malignancy indicator and
malignancy discriminator parameters. NHL, non-Hodgkin’s lymphoma; HD, Hodgkin’s disease; MM, multiple myeloma; PBL, peripheral

blood leukocytes.

tially lower than the number of patients (n = 98), i.e., the
classification matrix is not overdetermined in a statistical
sense. An important quality criterion for computer classi-
fication consists of the correct classification of unknown
test samples. CLASSIF1 classifiers have proven to be quite
robust in this respect (4, 6, 8).

The successful classification of the learning set (Table
2A) and the very substantial difference between the

BMA/PBL discriminatory parameter pattern of normal
individuals (Table 5) and the NHL/HD/MM parameter
pattern (Table 4) including the selection of 57.8% (Ta-
ble 4) and 52.6% (Table 5) of antigen expression pa-
rameters indicates a definitive antigen shift of nonma-
lignant bone marrow cells in NHL and HD patients. This
antigen shift is different between NHL and HD patients.
Only three parameters of the normal BMA/PBL discrim-
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Table 5
Parameter Pattern for Lymphocyte+ Granulocyte Classification of BMAnormal/PBLnormal
with Four Three-Color Assays®

Classification Param
mask _changes
parameter Cell parameter PBL BMA
1 % CD45neg in lymphogate (NHL/HD/MM par#2) 0 +
2 % CD45neg/CD14neg in lymphogate (NHL/HD/MM par#4) 0 +
3 % lymphogate cells (CD45/14/20 assay, NHL/HD/MM par#1) 0 -
4 % kappa pos/CD19neg in lymphogate 0 +
5 % CD8neg/CD3neg in lymphogate 0 +
6 % kappa neg/CD5neg in lymphogate 0 +
7 % CD5neg in lymphogate 0 +
8 % CD19pos/CD5neg in lymphogate 0 +
9 % lambda neg/CD5neg in lymphogate 0 +
10 CD14 on CD14pos cells in granulogate 0 -
11 CD14 on CD45pos/CD14pos cells in granulogate 0 -
12 CD8 on CD8pos in granulogate 0
13 CD19 on CD19pos in granulogate 0 -
14 CD19 on lambda pos/CD19pos in granulogate 0 -
15 CD14 on CD14pos/CD20pos cells in granulogate 0 -
16 CD45 on CD45pos/CD20pos in granulogate 0 -
17 CD3/CDS8 ratio on CD8pos/CD3neg in granulogate 0 +
18 CD5/kappa ratio on kappa pos/CD5pos in granulogate 0 -
19 CD5/lambda ratio on lambda pos/CD5pos in granulogate 0 -

“LCLEARN classifier, 15/85% percentiles, 19 of 512 available lympho- and granulocyte parame-
ters (3.7%) contain the discriminatory information. BMA, bone marrow aspirate; PBL, peripheral

blood leukocyte.

inatory data pattern (Table 5) are found among the 38
parameters of the NHL/HD/BM classifier data pattern
(Table 4), clearly indicating that the observed discrim-
ination of the malignant patients is not based on the
inherent difference between normal BMA and normal
PBL cells. This is a further example of the earlier obser-
vation (6) that BMA samples can be classified against
PBL controls, which represents a significant simplifica-
tion for BMA immunophenotype classification in rou-
tine clinical practice.

It is unclear at present whether the antigen shift of
normal BMA cells in NHL and HD patients represents an
altered cell differentiation in the presence or as cause of
the malignant process or whether it is induced by adaptive
changes of normally differentiated cells. This observation
may permit the detection of NHL or HD from PBL instead
of BMA samples. It seems also reasonable to assume that
list mode files from lymph node specimens are suitable in
the same manner for computerized classification. A new
approach for the diagnosis of hematologic disorders in
lymph nodes by standardized cytometry may arise from
such considerations.

It is surprising that so much information for discrimina-
tion between NHL, HD, and MM is provided by an immu-
nophenotype panel that is normally not designed for this
purpose. If the concept of not optimally adapted immu-
nophenotype panels together with exhaustive data analy-
sis and classification can be generalized, it will not only be
possible to simplify complex immunophenotype panels
but also to collect a significant amount of information on
changes and altered reactivity of nonmalignant bystander
cells as response or as cause of the malignant processes, as

well as on the relevant behavior of the various cell popu-
lations during chemotherapy or irradiation.

It is in any case clear that the present CLASSIF1 classi-
fication of information from normal BMA cells provides an
equal or better discrimination between NHL and HD (Ta-
ble 2) than the one achieved by histologic examination of
the affected lymph nodes, where typical recognition rates
of 46%-86% have been published (17,18).
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