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Abstract: It takes about 10 to 15 years and roughly 800 mln $ to bring a new drug to the market. Only 10% of drug mole-
cules entering clinical trials succeed and only 3 out of 10 drugs generate enough profit to pay back for the investment.  

Drug targets may be searched by hypothesis driven modeling of molecular networks within and between cells by systems 
biology. However, there is the potential to simplify the search for new drugs and drug targets by an initial top-down cy-
tomics phase. The cytomics approach i) requires no detailed a-priori knowledge on mechanisms of drug activity or com-
plex diseases, ii) is hypothesis driven for the investigated parameters (genome, transcriptome, proteome, metabolome a.o.) 
and iii) is hypothesis-free for data analysis. Moreover it iv) carries the potential to uncover unknown molecular interrela-
tions as a prerequisite for later new hypothesis driven modeling and research strategies.  

A set of discriminatory parameter patterns (molecular hotspots) describing the cellular model (mechanism of drug action) 
can be identified by differential molecular cell phenotyping. Hereby, the immediate modeling of existing complexities by 
bottom-up oriented systems biology is avoided. 

The review focuses on the fast technological developments of molecular single cell analysis in recent years. They com-
prise a multitude of sensitive new molecular markers as well as various new image and flow cytometric high-content 
screening methods as facilitators of the cytomics concept. New bioinformatic tools enable the extraction of relevant mo-
lecular hotspots in description of cellular models, being required for the subsequent molecular reverse engineering phase 
by systems biology.  
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A. THE PROBLEM – WHERE WE ARE IN THE 

DRUG DISCOVERY PROCESS 

Pharmaceutical and biotech companies try to develop 
new drugs that have a high chance to reach the market and to 
fund their research. The current disease models used in drug 
discovery and preclinical development have difficulties to 
predict failure in drug development (clinical phase I to III 
and IV) in 80–90% of drugs entering clinical trials. 

It requires about 10 to 15 years and between US$ 500–
800 million to bring a new drug to the market [1, 2]. Only a 
10% overall success rate of drug molecules entering clinical 
trials [3] is typically reached. In addition, only 3 out of 10 
drugs generate enough profit to pay back for the investment 
[4]. One of the reasons for this is that currently used disease 
models show a correlation deficit to clinical reality, because 
of the underestimation of the complexity and variability of 
clinical disease processes in man [5]. To improve the overall 
efficiency and profitability new technologies and parameter 
screening approaches supporting drug discovery and devel-
opment are being introduced in the following. 

The emerging potential to gain detailed quantitative data 
from biological specimens has become increasingly impor-
tant in the new fields of high-content and high-throughput 
single-cell analysis for systems biology and cytomics [6, 7]. 
Genomics, proteomics and metabolomics provide important 
technical contributions to cell biology but become limited 
when single or scarce cells are examined or fast cellular 
processes have to be followed kinetically [8]. 
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B. CYTOMICS 

It is important to keep in mind that single cells constitute 
the elementary building units of living organisms. Cytomics 
as bioinformatic knowledge extraction from molecular cell 
phenotype analysis of many single cells of cell systems (cy-
tomes), tissues, organs, and organisms by image or flow cy-
tometry [9] provides a new potential to unwind the cellular 
biocomplexity of organisms starting from the cellular level.  

In analogy with other -omics like genome/genomics, pro-
teome/proteomics, metabolome/metabolomics, the scope of 
cytome/cytomics concerns heterogeneous cellular systems. 
Cytomics is the broadest approach of any cell-based -omics 
and harbors among others (cellular) metabolomics, lipidom-
ics, location proteomics and toponomics [6]. The functional 
heterogeneity of cytomes results from both the genome and 
external environmental influences. Cytomics can be consid-
ered as a discipline that links genomics and proteomics to 
cell and tissue phenotype and function, as modulated by ex-
ternal influences. Of special importance is the cell-by-cell 
basis of cytomics analysis. This approach allows resolving 
heterogeneous systems by avoiding the loss of information 
that characterizes bulk technologies where average values 
are obtained from large number of cells or from tissue ho-
mogenates [9]. The cytomics approach reflects the reality 
that cells and their inter-relationship and not genes or bio-
molecules represent the elementary function units of organ-
isms.  

Typical cytomes are the system of leukocytes in the pe-
ripheral blood or the cell system of an organ. For drug dis-
covery such cytomes are difficult to obtain in large entities. 
That is why appropriate cellular models like hepatocytes are 
being introduced and are treated as representative cell sys-
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tems (cytomes) consisting of single cells in variuos states of 
proliferation, differentiation and activation [9]. Cellular 
populations, however, are observed to respond heterogene-
ously to perturbations. In response to a stimulus, cells un-
dergo changes seen as repertoire of underlying states of func-
tional significance [10]. In the era of stem cell technology 
new cellular models like iPS (induced pluripotent stem cells) 
are at reach and are good candidates for establishment of 
stable cell models for drug screening [11]. Multidimensional 
(3 to 4 dimensional) analysis of cellular factors as the conse-
quence of cellular dynamics, heterogeneity of structure and 
function resulting from genome and impact of environment 
[12] and phenotypic background [8] have to be taken into 
account when searching for new drugs binding to proteins 
[1] and affecting cellular responses.  

Top-Down Strategy 

Cytomics investigations use a top-down strategy (Fig. 
1a) with hypothesis-driven parameter selection in combina-
tion with hypothesis-free exhaustive knowledge extraction. 
While a given hypothesis can be proven or disproven using 
multiparametric measurements by focusing only on a re-
stricted number of measured parameters, the evaluation of all 
collected cell data in a data driven fashion (discovery sci-
ence) enables the hypothesis-free exploration of unknown 
multiparametric data and knowledge spaces for discrimina-
tory parameters. A new round of hypothesis driven parame-

ter selection and further experimentation may result from the 
first evaluation [13].  

The top-down approach realizes that cells and not genes 
or biomolecules represent the elementary self reduplicating 
function-units of organisms and that diseases are caused by 
molecular alterations in cells or cytomes as consequence of 
genotype and exposure to external or internal influences 
[13]. 

Parameter Selection Dilemma 

The overall aim of the cytomics approach is to reduce 
costs and increase the speed of the drug discovery process. 
This is obtained by reducing redundancy of the selected in-
formative parameters but keeping the highest possible infor-
mation density. Due to the hypothesis-free knowledge ex-
traction the minimum number of required parameters se-
lected for the final discriminatory data set is not predefined.  

It is hard to theoretically predefine the exact (minimum) 
number of parameters which have to be analyzed for an un-
biased drug selection. The fundamental problems of drug 
screening are low specificity for the target selection, which 
refers to the loss of false negative drugs, combined with low 
sensitivity, which refers to selection of false positive drugs. 
Therefore, the main drug discovery problems are: false posi-
tive lead-drug selection (low sensitivity) and the loss of po-
tential valuable drugs due to lack of investigating specific 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Comparison of (A) top-down (cytomics) and (B) bottom-up strategies (systems biology) for data mining.  

A. Multiparametric molecular cell status and reactivity like: proliferation, cell death, differentiation, cell movement or metabolic parameters 

(pH, membrane potential) are assessed by the top-down cytomics strategy. Thus entire cells (cytome, cellular networks, balanced systems) 

instead of biomolecules as elementary units are processed to collect the heterogeneity of parameter expression in individual cells to access 

the underlying regulatory information rather than to explain the behavior of the average or typical cell. Afterwards molecular reversed engi-

neering may be used to search molecular pathways and target molecules from discriminatory data patterns. 

B. The search and selection of molecular parameters by bottom-up strategy is based on the hypothesis-driven assessment of particular mole-

cules within a putative interaction concept. This leads to poor overall complexity understanding as a progress limiting factor.  
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targets or cellular models (low specificity) [14]. Here the 
cytomics approach may be the solution.  

Initial testing for informative parameters (relevant for 
drug screening) may include all possible (accessible and 
testable) parameters (proteins, genes, transcripts, cell death, 
proliferation, and cell function), best in their spatio-temporal 
relationship. It is obviously not feasible to measure all possi-
ble parameters on a cell system due to high costs, technical 
challenge and low throughput. Therefore strategies have to 
be developed to scrutinize for those parameters and parame-
ter combinations bearing the highest discriminatory power 
(i.e. the molecular “hot spots”) and thereby reducing the 
number of required cellular parameters to be analysed to a 
minimum. The additional advantage of multiparametric 
measurement is that within a single analysis a multitude of 
drug actions can be interrogated thereby again reducing costs 
and time.  

Such strategies have been proposed by us for the panel 
development for the predictive medicine by cytomics ap-
proach [15] and could be applied likewise for the develop-
ment of drug discovery test systems. In the following we will 
briefly describe the necessary steps to be taken for predictive 
medicine by cytomics that can serve as a model for the drug 
discovery by cytomics procedure. This strategy typically 
comprises three levels (see also Fig. 2): 

1) At the first level, the explorative phase, a high num-
ber of parameters is analyzed on a relatively low 
number of samples such as healthy individuals vs. 
diseased patients. In drug discovery the groups tested 
would be in analogy drugs without (negative control) 
vs. drugs with (positive control) known biological ef-
fects. The positive control may consist of different 
classes of drugs with differing biological effects (e.g. 
inducing apoptosis and/or cell activation and/or 
modulation of translation or transcription). Parameter 

selection to discriminate these test drugs should not 
only be hypothesis driven but has to be set broader in 
order to be able to detect the unexpected [10].  

 After exhaustive hypothesis-free mathematical data-
mining, out of this wide range of tested parameters 
(variables) those are selected that can discriminate the 
investigated classes of drugs by >95% [16]. Multi-
variate mathematical tools for parameter selection and 
reduction are typically discriminant analysis, princi-
pal component analysis, Classif1, neuronal networks 
and others [16-18]. In this first phase, the parameter 
selection and reduction should be done at low strin-
gency in order to leave more testable parameters for 
the next study level than essentially needed for opti-
mal group discrimination. 

2) In the second level of test development, the first 
evaluation phase, the selected parameters from the 1

st 
level are applied to a larger test group of drugs. The 
intention of this phase is to test validity and reliability 
of the test system and to further optimize and reduce 
the parameter number to the absolutely essential. At 
this point also “blinded” drugs should be included and 
tested how well they can be identified by the opti-
mized panel. Using the multivariate test for the unsu-
pervised learning of discriminatory patterns the 
blinded (but functionally known) drugs should be 
identified correctly [16].  

3) The third level of test development is the final valida-

tion of the assay on a large number of functionally 
known compounds and also a large number of blinded 
but known compounds. The intention of this third 
phase is the final testing and fine-tuning of the panel. 
If the third phase yields the expected result of ~100% 
correct prediction of the blinded drugs then the cy-
tomic test is ready to go for the unknown samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Flowchart showing how cytomics approach supports drug discovery. 
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As an example from our preclinical studies, we per-
formed cytomics to discriminate pediatric patients with an 
uneventful clinical course after cardiac surgery from those 
who overreacted based on preoperative blood sample analy-
sis. Initially, we started with several hundreds of data values 
per sample. Using the above approach we were able to cut 
down the number of required parameters to nine or even less 
and still clearly discriminate patient groups with an overall 
correctness of nearly 100% [19]. Blinded blood samples in 
the second phase were correctly identified with around 90%. 

Consequently, these development and optimizing steps 
lead to drug discovery process acceleration from tedious 
high-content or med-content and low-throughput multi-
parameter assays to a few parameters-based high-throughput 
drug activity screening process. Importantly, as all acquired 
data and results are databased aided by machine learning the 
test system is permanently improving its specificity and sen-
sitivity. 

The lack of discriminatory functional parameters not in-
cluded into the primary parameter selection set may be one 
reason for a poor discriminatory capability of a data classi-
fier. Also, selection of an inappropriate cellular model will 
limit drug function detection because the selected cellular 
model is not representative for a specific drug activity. Hav-
ing not found the target for a drug in a cellular model a drug 
candidate will be eliminated. Cell-based disease models in 
which the molecular diversity of the human cytome could be 
taken into account will improve the predictive value of drug 
discovery [1, 20-23]. Assembling a database of cellular 
processes by establishing a human cytome project would 
help to improve our understanding of disease processes and 
their spatial and temporal dynamics at the cellular level [13]. 
This information could stimulate drug discovery by defini-
tion of the new valuable targets for drugs [13]. 

The cytomics approach limits rejection of valuable pa-
rameters thanks to its unbiased data mining process. Moreo-
ver, cytomics allows elimination of those parameters that are 
not informative to the drug selection process thereby de-
creasing redundancy, time of analysis and costs. As an ex-
ample, in cell cycle analysis combined measurement of cy-
clin B1 and the mitotic index does not improve discrimina-
tory power for a drug that perturbs cell cycle as both are as-
pects of one process and one of them may be eliminated 
from the final set of parameters [24]. 

A specific aspect of the cytomics approach is that the 
data mining process requires a defined, repetitive set of cell 
responses (cell death, change in morphology a.o.) for the 
proper learning process of the classifier. Therefore, these 
responses are not taken into account for the selection process 
of unknown activities and drugs may remain unrecognized 
during screening. However, the initial parameter selection 
can be improved by using different cellular models depicting 
different cellular functions which may be putatively affected 
by the drug [25-27]. To this end one can facilitate and enrich 
parameter selection by new approaches for cell status de-
scription [10, 23]. 

Perspective – Multicenter Drug Evaluation 

Whichever assay or technology is used, the increased 
amount of parameters requires appropriate standardization 

procedures and controls for reliable data acquisition and 
analysis. Such methods have been recently reviewed for flow 
cytometry and similar approaches apply for image cytometry 
and high-content screening [28, 29]. Standardization as well 
as regular quality control is pivotal in drug discovery in or-
der to make the data obtained during several cycles of cell 
analysis or analyzed in different laboratories comparable. 
They are of course of central relevance in developing stan-
dard operational procedures (SOPs) and making an analytical 
process GLP and GMP compatible. 

Final evaluation of drug candidate efficacy has to be per-
formed by international consortia trials. This requires stan-
dardization and quality control of instruments and laboratory 
procedures for comparison of the results [30, 31]. Such stan-
dards for inter-laboratory portability have been already in-
troduced for multiparameter cytometric analyses of cell phe-
notype and function [32]. These efforts meet well with the 
demand for the standardized, reliable data collection and 
processing of cytometric data in drug discovery [33, 34]. The 
SOPs for the parameters selected by cytomics data mining 
applied in multicenter studies will prove their usefulness for 
drug efficacy evaluation [35]. 

C. SYSTEMS BIOLOGY APPROACH 

The molecular biocomplexity of organisms may alterna-
tively to cytomics be investigated bottom-up from genes to 
biomolecules, and organelles to cells, tissues and organs 
[36], by systems biology (Fig. 1b). 

Systems biology aims to describe quantitatively how 
properties of biological systems can be understood as func-
tions of the characteristics of and interactions between their 
macromolecular components [37]. Whereas traditional bio-
chemistry focused on isolation and characterization of cellu-
lar components, the challenge for systems biology lies in the 
integration of this knowledge and the knowledge about mo-
lecular interactions in the cell. So systems biology is, like 
cytomics, a holistic view of biological systems. Computer 
models (“virtual cell”) play an important role in this integra-
tion and may render in-silico prediction of drug function.  

Systems biology uses computational analyses to surf 
through large volumes of data, to identify unique sets of 
molecules involved in particular cellular responses, and to 
develop statistical relationships between molecules that sug-
gest causal interactions [38]. Once such data are acquired, 
the crucial and obvious challenge is to determine how these, 
often disparate and complex, details can explain the cellular 
process under investigation. The ideal way to meet this chal-
lenge is to integrate and organize the data into a predictive 
model [38, 39]. 

To develop a full understanding of the mechanisms un-
derlying a cell biological event, however, the quantitative 
physicochemical details must be elucidated. As a first pre-
requisite, this requires measurements of the concentrations, 
locations, biochemical reaction rates and membrane transport 
kinetics for the involved molecules. Such data can come 
from traditional biochemical methods, but are also available 
through direct in vivo measurements on live cells, using 
modern microscope imaging with fluorescent probes and 
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indicators and electrophysiological techniques such as patch-
clamp single-channel recording [38]. The model can also be 
used to perform ‘virtual’ experiments in advance of a real 
experiment and can simulate the behavior of molecules that 
are not easily visualized experimentally. 

A “Virtual Cell” biological model is composed of three 
parts in an expanding tree structure: (1) a single ‘physiologi-
cal model’ that captures the mechanistic hypothesis; (2) one 
or more ‘applications’, where experimental conditions, ge-
ometry and (3) modeling approximations are introduced to 
pose a concrete mathematical problem; and one or more 
‘simulations’, where each represents a numerical solution to 
the mathematical problem posed by an application [40]. 

Cytomics and systems biology approach for drug discov-
ery are approaches that strongly interrelate and support each 
other [13, 18]. The hypothesis-free cytomics approach serves 
with the detected molecular hot-spots as data inventory for 
cell modeling. In turn, systems biology provides hypothesis 
for targets of novel drugs and helps to set up and optimize 
functionalities that have to be investigated for a specific class 
of drugs. 

We advocate integrating a top-down approach, where 
measurements on the complete system are used to derive 
fluxes in a detailed structural model, with a bottom-up ap-
proach, consisting of the integration of molecular mecha-
nism-based detailed kinetic models into the structural model. 

D. STATE OF THE ART TECHNOLOGY – TOWARDS 

SINGLE CELL DECIPHERING 

With the rapid developments in the different ‘omics’ 
fields, our knowledge of cells and their molecular compo-
nents has dramatically increased. Although many cellular 
components have not yet been identified, we are rapidly ap-
proaching a complete description of several cellular systems. 
Corresponding with such an increase in our detailed knowl-
edge of the cell we can also expect an increase in the level of 
details at which our models describe such systems. Ulti-
mately, such models could describe a complete cellular sys-
tem at the reaction level, i.e. containing all enzymes, their 
mRNA levels and metabolite concentrations [41]. 

Combining data streams collected at different levels of 
biological organization such as molecular, cellular, and 
physiological responses offers the chance to a system-wide 
view in biology [42] that is to combine “-omic” studies with 
functional analysis [43]. High-content, quantitative analysis 

and network construction can be performed without a priori 
knowledge of pathway connectivity warranting circumven-
tion of unknown pathways with loss of valuable and essen-
tial information [43, 44]. 

From the point of view of developing a cytomics drug-
discovery platform we face a multi-step process including 
several preparation steps for drug activity evaluation (see 
Table 1). A final protocol however requires not only good 
and standardized preanalytics but furthermore the application 
of the appropriate high-technology platforms. 

State-of-the-art multicolor flow and image cytometry 
combined with powerful novel dyes and detector molecules 
allows validating candidate genes and proteins at the single 
cell level combined with a detailed phenotypic and func-
tional characterization of cell subsets. The integration of 
appropriate bioinformatics solutions with multiparametric 
analysis on the level of cell phenotype and then down to 
genotype predestine top-down approach to promote the drug 
discovery [45]. Thanks to the availability of plethora of fluo-
rescent markers and the multiplicity of fluorescence detec-
tors interfaced to the dedicated instrumentation, cytomics 
assays may be multiparametric, polychromatic, hyperchro-
matic and multiplexed [44, 46-48]. 

Selecting the Right Dyes  

High-throughput automated fluorescence imaging of bio-
logical processes in living cells is currently technically chal-
lenging, and requires robust and simple fluorescent labeling 
techniques. The fluorescent reporters need to be specific, 
they should interfere as little as possible with the biological 
process being visualized and they must not perturb the global 
physiological conditions of the cells. Most importantly, the 
labeling and detection procedures have to be quantitative and 
highly reproducible so that different experiments that have 
been carried out at different times can be compared, and that 
image data can be evaluated using automated phenotypic 
analysis — an absolute requirement for large-scale projects 
[49]. 

With the right selection of a combination of different 
fluorescent detecting molecules with different colors as well 
as site-specific structural and functional targeting we are able 
to combine the quantitation of different functional aspects of 
cellular response in a single experiment. Fluorescent tags 
such as quantum dots [50], a plethora of fluorescent proteins 
[51], and switchable molecular colors (PS-CFP, PA-GFP) 
[52] give the substantial advantage for imaging selectively 

Table 1. Steps Required for Drug Activity Evaluation 

 

Step Assays References 

1 Identification of specific target cells or cells susceptible to drugs or xenobiotics [9, 11, 23, 67] 

2 Detection and quantification of toxicity [23, 27, 106]  

3 Characterization of drug and xenobiotic mechanisms [23, 24, 112] 

4 Multiplexed analysis of soluble analytes [7, 32, 88]  

5 High-throughput and high-content screening [49, 91, 111]  

6 In-fluxo kinetic analysis by flow cytometry [7, 29, 34]  
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labeled cells and their interaction in-vitro and in-situ with an 
excellent signal-to-noise ratio. Once we are able to stain the 
molecular targets with a myriad of available fluorescent 
molecules, single-cell-based optical analysis will be more 
specific and quantitative [53]. 

Development of fluorescent, organelle-targeted probes 
has been driven by an interest in discovering new dyes that 
excite and emit in the visible spectrum, and that possess spe-
cific subcellular localization features so that they can be used 
as organelle markers or physiological biosensors [54, 55]. 
The group of Allan Waggoner developed recently protein 
reporters that generate fluorescence from otherwise dark 
molecules (fluorogens) [56]. They presented eight unique 
fluorogen activating proteins (FAPs) that have been isolated 
by screening a library of human single-chain antibodies us-
ing derivatives of thiazole orange and malachite green. These 
FAPs bind fluorogens with nanomolar affinity, increasing 
green or red fluorescence thousands-fold to brightness levels 
typically achieved by fluorescent proteins. Visualization of 
FAPs on the cell surface or within the secretory apparatus of 
mammalian cells can be achieved by choosing membrane 
permeant or impermeant fluorogens extending the possibility 
to image live cells and analyze their subcellular locations. 

The emergence of powerful probes and dyes as well as 
fluorescence microscopy techniques such as fluorescence 
recovery after photobleaching (FRAP) [57], fluorescence 
resonance energy transfer (FRET) [58], total internal 
reflection fluorescence (TIRF) [59], fluorescence correlation 
spectroscopy (FCS) [60] and fluorescence uncaging [61], 
have made fluorescence microscopy an indispensable tool for 
cell biological investigation. They particularly, have opened 
opportunities for quantitative measurement of molecules in-
vivo. Although most of the above technologies are presently 
still medium to low through-put, large efforts are being made 
to increase sample analysis for large scale screening [62]. 

Emerging label free technologies may once replace the 
need of tagging and thus perturbing biological systems. Such 
technologies on the horizon are a.o. Raman spectroscopy, 
impedance cytometry, and near infrared spectroscopy [63-
65]. Newly developed or modified instrumentation for opti-
cal imaging based on reflectance, two-photon, and multis-
pectral imaging, can detect and localize cellular signatures of 
cancer in vivo, without the use of contrast agents or extrinsic 
dyes [66]. However, these assays are still even more time-
consuming than traditional high-content fluorescence mi-
croscopy and far from being applicable in high-throughput 
assays.  

Cells and Models 

Depending on the drug’s activity being tested different 
cell and tissue models and sample preparations are applica-
ble [23]. The cell type analyzed also determines which in-
strumentation is suitable for analysis (adherent or suspended 
cells or tissue; live cells or fixed cells). Large-scale projects 
using high-throughput microscopy have applied almost ex-
clusively fixed-cell assays so far [49]. Unfortunately, such 
endpoint experiments do not provide any temporal informa-
tion and results might be misinterpreted if, for example, the 
final state of the examined cells is an indirect consequence of 
a number of sequentially occurring events. Experiments us-
ing live-cell assays and high-throughput time-lapse micros-
copy can overcome this problem, and they provide much 
more detailed phenotypic information than fixed-cell assays 
[67-69]. Finally, site directed cell modification and perturba-
tion by targeted gene modification [70] or iPS are good puta-
tive models for drug discovery [11]. 

Single cell arrays are nowadays available for cells in sus- 
pension (e.g. leukocytes) to deposit ten-thousands of indi- 
vidual cells in microchambers for further high-content in  
vivo or in vitro phenotypic and functional high-content  
analysis [71-76]. Cell culture systems consisting of different  
microscale cell cultures that are inter-connected by a fluidic  
circulation can be used in high-throughput imaging systems  
to monitor drug response system in different cell lines simul- 
taneously and may one day mimic whole organisms [77]. 

High-Content High-Throughput Technologies 

Currently, the development of the concept of cytomics 
goes hand in hand with the establishing of high-content and 
high-throughput methodologies for flow and image cytome-
try [20] screening assays [24, 74, 78]. New and emerging 
technologies focus on the single-cell level to address demand 
for precise high-content multiparameter analysis (see Table 
2). In recent years, we have witnessed the development of 
large scale quantitative cellular research as in High-Content 
Screening which is the promise for high-content and high-- 
throughput analysis [79].  

Inherent to cytomics are the use of sensitive, scarcely in-
vasive, fluorescence-based multiparametric methods and the 
event-integrating concept of individual cells to understand 
the complexity and behavior of tissues and organisms. These 
methods comprise: flow cytometry (FCM) [44], confocal 
microscopy [78, 79], laser scanning cytometry (LSC) [6], 
high-content screening bioimaging [80], automated scanning 

fluorescence microscopy [81]. As the single-cell level is of 

Table 2. Constituents of Multiparameter Single-Cell Analysis 

 

Step Levels of single cell quantitative analysis References 

1 Quantitation of as many cellular constituents on the single cell level as possible [47, 74, 89] 

2 Quantitative structural analysis of cellular constituents and their interrelations [93, 95,110] 

3 Quantitation of molecular interactions in cells e.g. FRET [58, 62,100] 

4 Quantitation of cell function properties [7, 27, 54] 

5 Quantitation of the interrelationship of cells [6,12, 107] 
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interest rapid cell identification and selection is required by 
fluorescence activated cell sorting [44], laser capture micro-
dissection [82] or optical tweezers [83], the laser-enabled 

analysis and processing (LEAP) technology [84] or single-
capillary gel electrophoresis for single cell proteomics [85]. 

Historically, FCM is the first single cell based high-
content technology. It is extremely powerful and versatile for 
quantitative analysis of soluble compounds, molecules of 
prokaryotic and eukaryotic cells in basic science, biotechno-
logical, environmental and clinical studies [86, 87, 88]. Al-
though state of the art FCM can measure up to 12 colors per 
cell simultaneously and some groups are even able to meas-
ure up to 17 labels at a time [28, 44], still these high-content 
experiments are fairly complicated to handle and are cost 
intense due to expensive exotic dyes that have to be used. An 
alternative approach was developed by the EuroFlow consor-
tium: Here multiple multi-color (up to 6 colors) panels with 

different antibody combinations are measured per sample 
and then mathematically combined to a meta-measurement 
yielding virtually infinite number of colors [89].  

Regarding the number of individual cells that can be an-
lysed in a short amount of time (up to 50,000/second) FCM 
is high-throughput. But, the number of different samples that 
can be analyzed in a certain time-frame is medium-
throughput. However, several improvements are being made 
to increase the sample throughput, making FCM a high-
throughput high-content instrument. This includes automated 
sample loading from microtiterplates, high-throughput ma-
chines [90, 91], cellular barcoding [92] and robotics. 

However, regarding high content analysis microscopic 
technologies are superior to FCM. With the appropriate 
technology we are theoretically enabled to quantitate virtu-
ally all compounds of individual cells including their intra-

cellular localization [47, 72, 74, 93]. These instrumentations 
enable for screening many drug targets and actions at the 
same time in the identical specimen. Their major limitation 
hitherto is its limited throughput which may be 5-10% of that 
of a FCM. 

As an example - a photonic microscopic robot technol-
ogy is capable of tagging and imaging hundreds, and possi-
bly thousands, of different molecular components, e.g. pro-
teins, of morphologically intact fixed cells and tissue. Data, 
assembled in a toponome (all-protein network on a single 
cell level) dictionary of the cell, led to the development of a 
new concept for target and drug lead discovery [94]. The 
currently available quantitative high-content microscopic 
techniques have been comprehensively reviewed by others 

[49, 95] and show that different instrumentations are nowa-
days on the market that are more dedicated either to life cell 
analysis or for high-content screening.  

The simultaneous determination of many colors can be 
realized by means of state-of-the-art technologies like spec-

tral imaging [96]. Multispectral imaging, which spectrally 
characterizes and computationally eliminates autofluores-

cence and discriminates dyes by spectral deconvolution, en-
hances the signal-to-background dramatically; revealing oth-

erwise obscured targets [97]. Cytomics requires both, accu-
rate architectural segmentation as well as multiplexed mo-

lecular imaging to associate molecular phenotypes with rele-

vant cellular and tissue compartments [98]. Multispectral 
imaging can assist in both these tasks, and conveys new util-

ity to brightfield-based microscopy approaches. Multiple 
molecular details may be obtained by polychromatic analysis 

of different cells and their function can be simultaneously 
recorded [99]. 

Slide-Based Cytometry 

New developments in image-based and slide-based cy-
tometry (SBC) enable to study cellular processes in great 

detail, so that a multitude of structural and functional infor-
mation can be extracted from cells [8, 100]. It can combine 

both, single-cell genomics and proteomics, with structural 
analysis [93, 95].  

With the increased number of measurable and quantifi-

able characteristics of a cell, in addition with its morphologi-
cal evaluation, multiplexed cell analysis by SBC is a power-

ful analytical and diagnostic tool. Its most important impact 
can be expected in drug discovery in the pharmaceutical re-

search [1, 101]. So far up to 8 colors could be simultaneously 
measured by LSC [46]. However, hyperchromatic cytometry 

by SBC sets new frontier for multiparameter analysis practi-
cally without limits [47]. This approach comprises a set of 

consecutive steps including: polychromatic cytometry, itera-
tive restaining, differential photobleaching, photoactivation, 

photodestruction. One of these approaches, namely iterative 
restaining has been adapted and is being used now by several 

groups for the high-content analysis of individual cells or 
subcellular locations of proteins [47, 72, 74, 93]. 

A specific feature of SBC, not covered by FCM, is the 
quantitative analysis of tissue sections. Steiner et al. demon-

strated that quantitative immunophenotyping of leukocytes 
in tissue sections is possible by confocal microscopy [102]. 

Gerstner et al. [103] showed quantitative three- and four-
color immunophenotyping of tonsil sections, and Mosch et 

al. [104, 105] established quantitative two- and three-
dimensional analysis of the distribution of nuclei and neu-

rons in brain tissue sections by LSC. Recently, approaches 
have been proposed towards the 3D-cytometry of tissue sec-

tions and in tissue cultures termed Tissomics. It assures that 
cells are in their natural environment while looking at effects 

of drugs [78, 106-110]. Microscopy-based multicolor tissue 
cytometry (MMTC) represents one of the first commercial 

tissomics instruments to quantify tissues at the single-cell 
level with automated processing of multicolor-labeled tissue 

samples [107]. 

Recently, automated whole slide imager that is capable of 

fully automated simultaneous fluorescent sample detection, 
autofocusing, multichannel digitization, and signal correction 

[81, 111] became available. It allows automated object rec-
ognition and scanning of the whole tissue sample thereby 

substantially speeding-up the process of image acquisition 
and analysis. But even so, image cytometry is with 100-

1,000 cells per second relatively slow regarding cell 
throughput as compared to FCM with >10,000 cells/second, 

meaning that speeding up the tests is a demand. 
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The Challenge of Fully Automated Image and Data 
Analysis 

Traditional visual and quantitative evaluations of gated 
2D or 3D cytometric histograms like in FCM collect only a 
very limited amount of the available information, and one is 
never certain whether the really relevant information has 
been extracted. Experience has also shown that it is not easy 
to provide quality controlled consensus strategies for multi-
parameter data evaluation [30, 112, 113]. There is also little 
pre-existing interpretative knowledge on very complex mul-
tiparameter data spaces. Essential information may therefore 
be lost, simply due to lack of awareness. As a consequence, 
more sophisticated unbiased multidimensional data mining 
techniques, rather than pattern recognition by an expert and 
reduction of dimensionality approaches, is required [114, 
115].  

The increasing number of cellular parameters being ana-
lyzed in imaging as well as screening from chemical com-
pound libraries requires automation. The acquired images 
can be subdued to automated image recognition. To this end 
new approaches were proposed to facilitate this process. 
They focus mainly on characterization of cellular and subcel-
lular shapes, and subcellular protein location by new soft-
ware developments [116-122]. Each of these approaches 
applies automated learning resulting in software capable of 
machine vision [123, 124]. This is aided by systematic col-
lection of information to cluster and catalogue cells accord-
ing to their molecular, organelle, and morphometric pheno-
type [125]. Consequently, analysis of multi-parametric 
measurements needs to be supported by sophisticated feature 
recognition which is part and parcel of image analysis [126, 
127] (see chapter: parameter selection dilemma). Application 
of the above mentioned automated image recognition tools 
will lead also to the determination of targets for novel drugs.  

To realize the full potential of these cytomic data for elu-
cidating cellular mechanisms of drug activity, software-
modeling tools such as the “Virtual Cell” are destined to 
become as indispensable to a cell biology laboratory as the 
microscope. All these developments in turn enable for rapid 
drug screening and multiparametric cell analysis with unbi-
ased drug selection and are the basis for the systemic ap-
proach of the analysis of biological specimens to enhance the 
outcome in clinical diagnosis and in drug discovery pro-
grams [127, 128]. 

CONCLUSIONS 

It is essential to work towards better quantitative under-
standing of the dynamics of cellular processes in multiple 
cell types to improve drug discovery and development. Cell 
based disease models taking into account the spatial and 
temporal molecular diversity of the human cytome seem 
capable to improve the predictive power of drug discovery 
and especially to bring down the high attrition rates in drug 
development. 

Future instruments and/or work flow will enable the 
analysis of cellular contexts at the single-cell level for the 
whole organism over high-throughput single-cell analysis in 
tissues (tissomics, toponomics). This analysis can be com-
bined with single-cell high-content metabolic investigation 

for lipidomics [129, 130] and metabolomics, intra-cellular 
location proteomics [94] down to single-cell proteomics [72] 
and genomics, leading to the merge of genomics, proteomics, 
cytomics and systems analysis [43, 131]. This will lead to 
faster and more precise drug discovery with lower frequency 
of false positive but, in our view more importantly, less false 
negative new drugs tested. 

ABBREVIATIONS 

FAP =  Fluorogen activating proteins 

FCM = Flow cytometry 

FRET =  Fluorescence Resonance Energy Transfer 

iPS =  induced pluripotent stem cells  

LSC =  Laser scanning cytometry 

SBC =  Slide-based cytometry  
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